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Board Comments on Seepage Chemistry

e “The DOE’s analyses of water chemistries and their
corrosive potential are extremely complex and suffer
from empirical and theoretical weaknesses. Thus, the
Board does not have a high degree of confidence in the
DOE’s conclusion that any seepage water would be
dilute or noncorrosive, because the methods used in
the DOE’s analyses have significant technical
uncertainties.”

(Executive Summary, p. ii)

e Inresponse to the Board, we present an overview of the
processes affecting seepage water and evaporated
brine chemistry and provide a high-level description of
how these processes are addressed.
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Overview of Presentation

Definition of the below-boiling period

What processes affect the chemistry of solutions that
could contact the waste packages?

What is the natural variability of ambient pore fluid
compositions and how will this variability affect in-drift
chemistry?

How does the Thermal-Hydrologic-Chemical (THC)
evolution affect the composition of potential seepage?

How does evaporation in the drift affect the chemistry of
solutions that could contact the waste packages?

How is chemistry coupled to the Time-Temperature-RH
histories of the emplacement drifts?

Conclusions
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Purpose of Evaluating Chemical Evolution of Fluids

Aqueous solution types affect Alloy 22
waste package corrosion differently
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In Which Cases Will the Chemistry of
Seepage Water Be Relevant?

e The chemistry of seepage water and its
evaporative evolution inside the drift will be
relevant only when seepage can occur

— Seepage can only occur when the drip shield fails

— Even in the absence of a drip shield, seepage can only
occur in the case of a limited number of waste packages
because of the efficiency of the capillary barrier
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Definition of Below-Boiling Period
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What Processes Affect the Chemistry of
Solutions in the Drift Environment?

o Initial pore water chemistry

e Thermal-hydrologic-chemical (THC)
processes in the rock

o Evaporative processes inside the drift




Variability of Pore Water Chemistry
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What is the natural variability of pore water
compositions in the ambient system?

e Samples of pore fluids have been collected and analyzed from
all potential repository units

e Pore waters show a substantial range of major cation
proportions (Ca*? and Na*) and important anions
(Cl, NO;, SO,2, CO,?)

— Ca*? generally becomes less abundant with depth due to calcite
precipitation and ion exchange with Na*

e NO,/CI ratios, important for metal corrosion, are variable

o Pore water compositions used as boundaryl/initial conditions
for THC simulations span the range in the ambient system
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Range of Pore Waters from Repository Horizons

TSW Pore Waters

Compositions chosen ° IP:PL"
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Nitrate to Chloride Ratios in Pore Fluids

NO3 (mol/L)
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Effect of THC Processes on Seepage Chemistry
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Thermal-Hydrologic-Chemical (THC) Evolution of
Fracture Fluids in the Rock

e Purpose of THC modeling

— Propagate range of ambient pore water compositions
through the THC processes to determine chemistry
of potential seepage

e Conceptual approach

— Capture coupled effects of solution-mineral-gas
reaction, gas-liquid transport, and heat transport

e Validation

— Drift-Scale Test
— Laboratory experiments
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Conceptual Model for THC Processes

— pH\ cO2/

Silica Dissolution
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Rock Matrix
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Model Validation - Drift-Scale Test

Observation

Hydrology:.

Heated Drift Boreholes\ ]

Schematic of Drift Scale Test

Modeled Data
(aty =17m)

Test Data
(at X= Om) 20

Measured and Modeled Temperatures

* E
Department of Energy » Office of Civilian Radicactive Waste Management PO 16

YMSteefel NWTRB_051904_BelowBoiling.ppt




Model Validation - Drift-Scale Test

(Continued)
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Model Validation - Laboratory Experiments
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Validation with Plug Flow Experiment

Tuff Dissolution Plug-Flow Experiment
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THC Model Predictions Provide
Potential Seepage Compositions
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In-Drift Chemical Processes
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What processes inside the drifts
affect the chemistry of seepage fluids?

o Temperature difference between drift-wall and waste
package creates gradient in RH

— Where seepage occurs, drift wall RH ~100%

— Drips move to lower RH inside drift, driving evaporation
and concentration of seepage water

— Initial solution composition along with T and RH determine
the reaction path

— Concentration of fluids leads to mineral precipitation and
depletion of solution in components
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Evaporative Reaction Path Described with
Chemical Divide Theory

Na, Ca, Mg, HCO,, SO,, CI

Evaporative
Concentration |
CaCO; precipitates
Carbonate species < Ca content Carbonate species > Ca content
Carbonate removed from solution Ca removed from solution

Na, Ca, Mg, SO,, CI Na, Mg, CO,, SO, CI
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Integrated Approach to Evaluating
Chemical Evolution of Fluids due to Evaporation

o Experimental investigations
— Detailed evaporation studies of solutions

— Literature data on salt solubilities and deliquescence
— Heterogeneous studies of multi-phase salt systems

e Modeling investigations

— Thermochemical model for multicomponent salt-brine
systems

— Pitzer database to deal with activity corrections at high
ionic strength

— Comparisons of model with data are used to validate the
modeling approach
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Experimental Studies of In-Drift Chemical
Processes

Department of Energy » Office of Civilian Radioactive Waste Management
YMSteefel NWTRB_051904_BelowBoiling.ppt



Environmental Chamber for
Evaporation Experiments

e

Flu|dized Sand Bath
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Good Agreement Between Experiment
and Model for the Evaporation at 95°C
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Comparison of Evaporative Model Against

Solubility Data at Various Temperatures
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Approach to Investigating
Multicomponent Salt Systems

Environmental Chamber
Controlled RH& T
Evaporation +
Water absorption +

salt precipitation
salt dissolution
RH&T
| ’/ probes \‘ ‘

U Initially

Initially dissolved
solid
Na* K*
. N Gl NO,
KNO;

Salt mixtures
at equilibrium both systems are the same
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Validation of YMP Thermochemical Model at 90°C
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Key Results of In-Drift Chemistry Analyses
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Summary of Key Results

o CacCl, brines unlikely to form during below-boiling
period

— Dilution and mineral reaction associated with THC
processes in the rock reduce Ca*?

— Ca*? further reduced during evaporation by mineral
precipitation

o Evaporation of seepage water leads to very large
decreases in fluid mass

o Time-Temperature-RH histories for drifts coupled to
evaporative chemical evolution
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CaCl, Seepage Brines Unlikely to Form

Borehole 59—Drrift Scale Test
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Evaporation Vastly Reduces the Fluid Mass

. Seepage fluxes are ~1400 times (monsoon) and
Drift Wall RH ~3100 times (glacial trans.) the width of graph
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Evaporation Reduces Fluid Fluxes Through Time

e Calculate the evaporative
fluid mass reduction using
the waste package history

— RH is dominant control

o Seepage fluids evaporate
extensively, leaving only
~1/500 to 1/10,000 of the
original fluid mass

e Evaporated brine flux is
~1 -100 grams/yr-WP
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Relative Humidity, %

Time-Temperature-RH History Coupled to

100

In-Drift Chemical Processes
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Summary of Possible Brine Chemistry for
Below-Boiling Period
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Conclusions

Although the evolution of seepage water chemistry is
complex, DOE has developed a scientifically
defensible, integrated approach that couples chemistry
to the Time-Temperature-RH history of the drifts

The approach considers

— The natural variability of pore water chemistry

— Modifications to pore and fracture water chemistry as a result of
THC processes

— Evaporative concentration and resulting mineral precipitation

The approach is implemented through a combination of
experimentation and modeling
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Conclusions

The analysis indicates that seepage will not result in
CaCl, brines during the below-boiling period because
of precipitation of Ca mineral phases

In hotter waste packages during the below-boiling
period, thermodynamic controls result in favorable
NO,/Cl ratios

Evaporated brine fluxes are on the order of 1-100
mi/WP/year

In the expected case where very little seepage on
waste packages occurs due to the effectiveness of
drip shields and the capillary barrier, the foregoing
discussion on seepage chemistry is irrelevant
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Flow Separation of Nitrate and Chloride

e Flow separation of nitrate and chloride is possible
because the nitrate salts are more soluble than the
Na and K chloride salts

— NaCl and KCI could precipitate while NO;" in solution
flows away, thus leaving a residual salt rich in chloride

— Chloride salts could then deliquesce at higher RH

e Flow separation of nitrate and chloride requires
very high degrees of evaporation (~10,000 times),
implying that fluid volumes are very small

— Natural capillarity of waste package surface will limit flow
of nitrate-rich solution at such high concentration
factors
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Is Flow Separation Possible for a
NaCl Seepage Water?

Low RH values correspond to NO,/ClI ratios increase if flow

high degrees of concentration separation does not occur
and low fluid volumes
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