

U.S. Department of Energy Office of Civilian Radioactive Waste Management

The In-Drift Chemical Environment During the Below-Boiling Period

Presented to: Nuclear Waste Technical Review Board

Presented by: Dr. Carl I. Steefel Lawrence Berkeley National Laboratory Bechtel SAIC Company, LLC

May 19, 2004 Washington, DC

Acknowledgements

- Talk preparation
 - David Sassani, Golder Associates/MTS
 - Nic Spycher, Lawrence Berkeley National Laboratory
- Pore waters
 - Zell Peterman, U.S. Geological Survey
 - Nic Spycher, Lawrence Berkeley National Laboratory
- In-drift chemical environment
 - Greg Gdowski, Lawrence Livermore National Laboratory
 - Susan Carroll, Lawrence Livermore National Laboratory
 - Tom Wolery, Lawrence Livermore National Laboratory
- Thermal-Hydrologic-Chemistry evolution
 - Nic Spycher, Lawrence Berkeley National Laboratory
 - Eric Sonnenthal, Lawrence Berkeley National Laboratory

Board Comments on Seepage Chemistry

- "The DOE's analyses of water chemistries and their corrosive potential are extremely complex and suffer from empirical and theoretical weaknesses. Thus, the Board does not have a high degree of confidence in the DOE's conclusion that any seepage water would be dilute or noncorrosive, because the methods used in the DOE's analyses have significant technical uncertainties."
 (Executive Summary, p. ii)
- In response to the Board, we present an overview of the processes affecting seepage water and evaporated brine chemistry and provide a high-level description of how these processes are addressed.

Overview of Presentation

- Definition of the below-boiling period
- What processes affect the chemistry of solutions that could contact the waste packages?
- What is the natural variability of ambient pore fluid compositions and how will this variability affect in-drift chemistry?
- How does the Thermal-Hydrologic-Chemical (THC) evolution affect the composition of potential seepage?
- How does evaporation in the drift affect the chemistry of solutions that could contact the waste packages?
- How is chemistry coupled to the Time-Temperature-RH histories of the emplacement drifts?
- Conclusions

Purpose of Evaluating Chemical Evolution of Fluids

Aqueous solution types affect Alloy 22 waste package corrosion differently

In Which Cases Will the Chemistry of Seepage Water Be Relevant?

- The chemistry of seepage water and its evaporative evolution inside the drift will be relevant <u>only when seepage can occur</u>
 - Seepage can only occur when the drip shield fails
 - Even in the absence of a drip shield, seepage can only occur in the case of a limited number of waste packages because of the efficiency of the capillary barrier

Definition of Below-Boiling Period

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_NWTRB_051904_BelowBoiling.ppt www.ocrwm.doe.gov

What Processes Affect the Chemistry of Solutions in the Drift Environment?

- Initial pore water chemistry
- Thermal-hydrologic-chemical (THC) processes in the rock
- Evaporative processes inside the drift

Variability of Pore Water Chemistry

What is the natural variability of pore water compositions in the ambient system?

- Samples of pore fluids have been collected and analyzed from all potential repository units
- Pore waters show a substantial range of major cation proportions (Ca⁺² and Na⁺) and important anions (Cl⁻, NO₃⁻, SO₄⁻², CO₃⁻²)
 - Ca⁺² generally becomes less abundant with depth due to calcite precipitation and ion exchange with Na⁺
- NO₃⁻/Cl⁻ ratios, important for metal corrosion, are variable
- Pore water compositions used as boundary/initial conditions for THC simulations span the range in the ambient system

Range of Pore Waters from Repository Horizons

Nitrate to Chloride Ratios in Pore Fluids

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_NWTRB_051904_BelowBoiling.ppt www.ocrwm.doe.gov

Effect of THC Processes on Seepage Chemistry

Thermal-Hydrologic-Chemical (THC) Evolution of Fracture Fluids in the Rock

- Purpose of THC modeling
 - Propagate range of ambient pore water compositions through the THC processes to determine chemistry of potential seepage

Conceptual approach

- Capture coupled effects of solution-mineral-gas reaction, gas-liquid transport, and heat transport
- Validation
 - Drift-Scale Test
 - Laboratory experiments

Conceptual Model for THC Processes

www.ocrwm.doe.gov

Model Validation - Drift-Scale Test

Schematic of Drift Scale Test

Measured and Modeled Temperatures

Model Validation - Drift-Scale Test

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel NWTRB 051904 BelowBoiling.ppt

(Continued)

Model Validation - Laboratory Experiments

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel NWTRB 051904 BelowBoiling.ppt

www.ocrwm.doe.gov 18

Validation with Plug Flow Experiment

Solution chemistry in effluent is captured with modeling

Propagation of fracture sealing is captured with modeling

THC Model Predictions Provide Potential Seepage Compositions

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_NWTRB_051904_BelowBoiling.ppt

In-Drift Chemical Processes

What processes inside the drifts affect the chemistry of seepage fluids?

- **Temperature difference between drift-wall and waste** package creates gradient in RH
 - Where seepage occurs, drift wall RH ~100%
 - Drips move to lower RH inside drift, driving evaporation and concentration of seepage water
 - Initial solution composition along with T and RH determine the reaction path
 - Concentration of fluids leads to mineral precipitation and depletion of solution in components

Evaporative Reaction Path Described with <u>Chemical Divide</u> Theory

Integrated Approach to Evaluating Chemical Evolution of Fluids due to Evaporation

- Experimental investigations
 - Detailed evaporation studies of solutions
 - Literature data on salt solubilities and deliquescence
 - Heterogeneous studies of multi-phase salt systems

Modeling investigations

- Thermochemical model for multicomponent salt-brine systems
- Pitzer database to deal with activity corrections at high ionic strength
- Comparisons of model with data are used to validate the modeling approach

Experimental Studies of In-Drift Chemical Processes

Environmental Chamber for Evaporation Experiments

Good Agreement Between Experiment and Model for the Evaporation at 95°C

Carbonate-type water

10000

Expt F

1000

1.E-04

1

10

100

000

Comparison of Evaporative Model Against Solubility Data at Various Temperatures

YMSteefel_NWTRB_051904_BelowBoiling.ppt

Approach to Investigating Multicomponent Salt Systems

Validation of YMP Thermochemical Model at 90°C

NaCI-KNO₃

NaCI-NaNO₃

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_NWTRB_051904_BelowBoiling.ppt

www.ocrwm.doe.gov

Key Results of In-Drift Chemistry Analyses

Summary of Key Results

- CaCl₂ brines unlikely to form during below-boiling period
 - Dilution and mineral reaction associated with THC processes in the rock reduce Ca⁺²
 - Ca⁺² further reduced during evaporation by mineral precipitation
- Evaporation of seepage water leads to very large decreases in fluid mass
- Time-Temperature-RH histories for drifts coupled to evaporative chemical evolution

CaCl₂ Seepage Brines Unlikely to Form

Borehole 59—Drift Scale Test

Ca⁺² decreases further due to mineral precipitation (especially calcite and fluorite) during evaporation – Ca⁺² decreases in potential seepage fluid due to dilution and mineral precipitation

Evaporation Vastly Reduces the Fluid Mass

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_NWTRB_051904_BelowBoiling.ppt

Evaporation Reduces Fluid Fluxes Through Time

- Calculate the evaporative fluid mass reduction using the waste package history
 - RH is dominant control
- Seepage fluids evaporate extensively, leaving only ~1/500 to 1/10,000 of the original fluid mass
- Evaporated brine flux is ~1 - 100 grams/yr-WP

www.ocrwm.doe.gov

Time-Temperature-RH History Coupled to In-Drift Chemical Processes

	Seepage Compositions			Brine Compositions		
Time	CI	NO ₃	NO ₃ /CI	CI	NO ₃	NO ₃ /Cl
years	millimolal	millimolal	mole ratio	molal	molal	mole ratio
650	0.73 to 3.3	0.13 to 0.31	0.07 to 0.42	7.2	5.9	0.81
1500	0.73 to 1.3	0.13 to 0.31	0.10 to 0.42	7.0	4.1	0.59
5200	0.73 to 1.3	0.13 to 0.31	0.10 to 0.42	3.2	0.58	0.18
9200	0.60 to 3.3	0.04 to 0.10	0.03 to 0.09	2.7	0.15	0.06

Summary of Possible Brine Chemistry for Below-Boiling Period

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_NWTRB_051904_BelowBoiling.ppt

Conclusions

- Although the evolution of seepage water chemistry is complex, DOE has developed a scientifically defensible, integrated approach that couples chemistry to the Time-Temperature-RH history of the drifts
- The approach considers
 - The natural variability of pore water chemistry
 - Modifications to pore and fracture water chemistry as a result of **THC** processes
 - Evaporative concentration and resulting mineral precipitation
- The approach is implemented through a combination of experimentation and modeling

Conclusions

- The analysis indicates that seepage will not result in CaCl₂ brines during the below-boiling period because of precipitation of Ca mineral phases
- In hotter waste packages during the below-boiling period, thermodynamic controls result in favorable NO₃/CI ratios
- Evaporated brine fluxes are on the order of 1-100 ml/WP/year
- In the expected case where very little seepage on waste packages occurs due to the effectiveness of drip shields and the capillary barrier, the foregoing discussion on seepage chemistry is irrelevant

Backup Slides

Flow Separation of Nitrate and Chloride

- Flow separation of nitrate and chloride is possible because the nitrate salts are more soluble than the Na and K chloride salts
 - NaCI and KCI could precipitate while NO₃⁻ in solution flows away, thus leaving a residual salt rich in chloride
 - Chloride salts could then deliquesce at higher RH
- Flow separation of nitrate and chloride requires very high degrees of evaporation (~10,000 times), implying that fluid volumes are very small
 - Natural capillarity of waste package surface will limit flow of nitrate-rich solution at such high concentration factors

Is Flow Separation Possible for a NaCl Seepage Water?

Low RH values correspond to high degrees of concentration and low fluid volumes

NO₃/CI ratios increase if flow separation does not occur

THC Fluid Evaporation: Brine Composition for Hot Location

YMSteefel_NWTRB_051904_BelowBoiling.ppt