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Outline
• Introduction/Purpose

• Technical areas with updated science and 
modeling activities to be presented

• Summary
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Introduction – Purpose of Presentation
• The decision to not submit the SAR afforded DOE the 

opportunity to include additional science and modeling 
in an updated SAR 

• The purpose of this presentation is to describe some of 
the ongoing testing and modeling

• These test and modeling results may be used to 
– support evaluations of features, events and processes (FEPs) 

screening decisions

– support model and parameter confidence (or to revise models 
and/or parameters)

– evaluate explicit conservatisms

– address > 10,000 year dose projections



YMAndrews_NWTRB_020905_rev1.ppt
Department of Energy   Office of Civilian Radioactive Waste Management

5

Technical Areas with Updated Science   
and Modeling to be Presented 

• Effects of long term climate change on unsaturated zone flow
• Thermal-hydrologic-chemical-mechanical results from Drift Scale 

Test
• Time dependent rock strength tests
• Alcove 8 - Niche 3 seepage and transport test
• Dust deliquescence effects
• Corrosion studies
• Radionuclide solubility from laboratory testing
• Saturated zone flow and transport results from Nye County testing 

in Early Warning Drilling Program (EWDP) wells
• Dosimetry models based on International Commission on 

Radiological Protection (ICRP) 72
• Seismic mechanical damage effects
• Aeromagnetic data interpretation of potential buried volcanic 

centers
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Unsaturated Zone Flow Effects
of Long Term Climate

• Climate change has occurred in the past and is likely to 
occur in the future
– Uncertainty exists in the timing and magnitude of future 

climate changes

• Over the past ~ 500,000 years:
– ~ 20% of the time has been glacial, 

– ~ 20% of the time has been interglacial and 

– ~ 60% of the time has been glacial transition/monsoon 

• Recent U-series age dating of opals by the USGS 
indicates that the repository level at Yucca Mountain is 
buffered from long term transient climate states
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Examples of Long Term Opal Growth Rates

U-series and U-Pb dating results for a  
3-cm-thick calcite-opal coating.   

Thermal Ionization Mass Spectrometry
(sample HD2019 from ESF 28+81)  
Photo taken in shortwave UV light.

U-series dating results    

Secondary Ionization Mass 
Spectrometry 

(Jim Paces et al. 2004 (USGS))
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Examples of Long Term Opal Growth Rates
(Continued)

• Rates vary spatially from about 0.24 to 2.4 microns per 1,000 
years
– Over last ~ 300,000 years rates vary spatially from 0.47 to 1.5 microns per 1,000 

years
– Variations in growth rates may be due to (a) changes in mineral growth dynamics, 

(b) changes in 234U/238U in solution with time, (c) changes in cross-sectional 
geometry and dip of layers or (d) variability in percolation flux

• Extremely uniform (with time) growth rates over the past 
300,000 yrs
– Imply little to no transient effects even though climate has varied over this time 

period
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Location of Test 
Alcoves and Niches 
in the Exploratory 

Study Facility 
and Enhanced 

Characterization of 
the Repository Block 

(Cross Drift)
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Thermal-Hydrologic-Chemical-Mechanical 
Results from Drift Scale Test

• Completed third year of cool down 
phase (after 4 years of heating)

• Continue monitoring of environment 
response

• Observations confirm drift scale 
coupled process models 
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Time-Dependent Strength Data            
for Repository Rocks
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• 32 additional laboratory static fatigue tests (creep tests) have been 
conducted on repository host rocks (colored diamonds below)

• New data confirm conservative nature of time-dependent strength 
response of repository host rocks



Alcove 8 - Niche 3 – Seepage
and  Transport Test

• Alcove 8 - Niche 3 fault test 
conducted first

• Alcove 8 - Niche 3 large plot 
test then conducted

• Both tests evaluate seepage 
and transport
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Alcove 8 – Niche 3 Large Plot Seepage Test
• Monitoring of seepage and infiltration has continued in large 

plot test

• Observed and predicted seepage confirm seepage model
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Alcove 8 – Niche 3 Large Plot Tracer Test
Application

Period

Zone Tracer Conc.
(ppm) Start End

2,6-Difluorobenzoic Acid 50
1

Potassium Iodide 10
3/1/04 4/13/04

2,5-Difluorobenzoic Acid 50
2

Calcium Bromide 500
3/1/04 3/17/04

2,4,5-Trifluorobenzoic Acid 50
3

Potassium Fluoride 50
3/1/04 4/13/04

• Pre test predictions (using transport  
model) predicted breakthrough would be 
observed in tens of days

• To date (about ten months), no 
breakthrough observed

• Believe lack of observed breakthrough    
is a result of more significant matrix 
diffusion than is represented in    
transport model

• Transport model is                  
conservative (leads to               
more rapid transport)                             
then this test area                                
would indicate

• Transport model does               
reasonably reproduce                       
Alcove 1 data and                              
Alcove 8 - Niche 3                                  
fault test data

Predicted Time Since Tracer Release (days)

Pre-Test Predictions of Large Plot Tracer Test
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Dust Deliquescence Test Information
• Likely dusts include small fraction of salts

– less than 1 % of observed dusts in ESF (during construction)
– about 10% of atmospheric dust in arid southwest

• Soluble salts are inferred to be varying salt contents of NaCl, KNO3, CaSO4, 
NaNO3, Ca(NO3)2 and  NH4 (Cl, NO3, SO4 or HSO4)

– None of these salts alone deliquesce above 160°C – however if certain combinations 
of these salts were in contact, the mixture could deliquesce above 160°C
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Analyses of Potential High Temperature
Salt Deliquescence and Effects

• Some combinations of salts might deliquesce above 160°C
– Given low percentage of soluble salts (1 to 10%), likelihood of such 

combinations occurring is low

• Even if such combinations existed, the resulting brine has a high 
NO3/Cl ratio (slide 17)

• Even if brine formed, the ammonium salts sublimate (slide 18)
– Ammonium chloride sublimates more, leading to higher NO3/Cl ratio

• Even if brine formed it would (slide 19)
– React with other dust solids to increase deliquescent relative 

humidity

– React with atmosphere to degas HCl and HNO3

• Even if brine persisted, it would be too thin to allow process to 
initiate or sustain localized corrosion (slide 20)
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Dust Chemical Composition

• Recent USGS dust analyses 
indicate:
– Dust solubles are between 

dust and pure water 
compositions

– Most dust solubles are 
greater than NO3/Cl molal
ratio of 0.5 (weight ratio  of 
0.9)

– Three outlier samples are 
from ESF conveyor belt 
(neoprene)

• Ongoing study of ammonia 
and ammonium
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Sublimation of Ammonium Salts

• Ammonium salts decompose to the gas phase
• NH4Cl is favored over NH4NO3 as a constituent of atmospheric dust

– Therefore a greater proportion of chloride will be sublimated at
elevated temperature

– Sublimation and degassing increases NO3/Cl ratio
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• Numerically evaporate all 53 
observed dust leachate
compositions, with and without 
rock-forming solid mineral phases 
– Use water-rock interaction and 

atmospheric CO2 to establish pH

– pH with solids present is buffered in 
the range neutral to mildly basic

– Higher dryout RH and simpler behavior 
is predicted with solids present

• Numerically remove acid-gas 
species (HCl, HNO3) in relation to 
abundance
– Chloride depleted earlier than nitrate
– Increase NO3/Cl ratio prior to chloride 

depletion
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Analysis of Dissolved Oxygen Variation 
with Potential Film Thickness
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• Although uncertainty exists in 
dust deposition, dust 
composition, dust particle size 
and deliquescent salt particle 
size, a conservative estimate  
of brine volume is about 1.7 
micro liters per square 
centimeter at 70% RH (~110 C)

• Equivalent film thickness is 
about 17 microns

• Film thickness is so small that molecular diffusion will inhibit the formation 
of anodic and cathodic regions within a corrosion cell

– Oxygen supply is significantly greater than oxygen depletion

• Therefore, passive film is expected to be stable and localized corrosion is 
not expected to initiate or propagate 
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Ongoing Alloy 22 Corrosion Studies

• Polarization resistance measurements

• Long-term corrosion potential

• Cyclic (potentiodynamic) polarization –
Repassivation potential

• Passive film studies

• Potentiostatic tests  



Alloy 22 General Corrosion
• Corrosion rates from long-term corrosion potential studies at 

100°C exposed > 100 days

Solution Corrosion Rate (µm/yr) 

[Cl-]  
(m) 

[NO3
-] 

(m) [NO3
-]/[Cl-] ASW ASW + SHT 

1 0.05 0.05 0.05 0.07 
1 0.15 0.15 0.04 0.04 

3.5 0.175 0.05 0.04 0.03 
3.5 0.525 0.15 0.04 0.09 
6 0.3 0.05 0.04 0.05 
6 0.9 0.15 0.04 0.03 

ASW = As Welded 
SHT = Solution Heat Treated (1120°C + Water Quench – Oxide Film Left 
on Surface) 

• Measured corrosion rates are within variation of Alloy 22 
general corrosion model

• No significant difference in general corrosion rates due to 
solution heat treatment
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Alloy 22 General Corrosion
• Alloy 22 corrosion rates decrease with time and 

nitrate concentration (based on data from 
polarization resistance measurements)
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Long-Term Corrosion Potential
• Additional environments 

– 1, 3, and 6 m NaCl at 100°C and 
KNO3:NaCl of 0.05 and 0.15

– 22.5 m Ca(NO3)2 + 0.225m 
MgCl2 at 145°C

– 18 m CaCl2 + (9 or 0.9) m 
Ca(NO3)2 at 155°C

• Mill annealed, as-welded (ASW), 
welded + aged (700°C for 173 h), 
solution heat treated (SHT)

• Prism Crevice Assembly (PCA) 
specimen geometry

• Corrosion potential is not a 
strong function of either 
chloride or nitrate ion 
concentration over range tested
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• Repassivation potentials used as basis for 
localized corrosion initiation likelihood

• Er1 rises with [NO3]/[Cl] ratio, falls with 
temperature
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Passive Film Studies of Alloy 22

• Oxide has four distinct layers
• Chromium oxide layer forms 

similar to that found in 
passive film studies over a 
range of solution conditions

Example cross-section TEM image of autoclaved 
sample held ~ 9 months at 220 C with NO3/Cl ratio    
of 0.3; corrosion rate ~ 0.15 µm/yr

Ni(OH)2 Rich Layer (0.2 – 0.25 µm)

Ni-Cr-Mo Oxide Layer (.08 µm)

Ni-Cr-Mo Oxide Layer (0.15 – 0.2 µm)

Cr2O3 Inner Layer (2 – 3 nm)

Metal (Alloy 22)
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Potentiostatic Tests to Evaluate Localized 
Corrosion Stifling Mechanisms
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• Reduction in current 
density implies 
stifling of initiated pit

• Stifling mechanism 
has been 
conservatively 
excluded from 
models to date
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Radionuclide Solubility from Laboratory Testing and 
Thermodynamic Modeling – Neptunium example

• NpO2 is the most stable pure 
phase Np solid over most of 
Eh/pH range

• Pure phase NpO2 model 
(at 25°C) conservatively 
overpredicts observations 
from spent fuel laboratory 
tests (at 80-90°C)
– Most recent Argonne National 

Laboratory (ANL) data 
(Fall 2004) represent  9 years 
of drip tests

• Secondary phase uranium 
minerals may be incorporating 
or sorbing Np during these 
tests

-6

-5

-4

-3

-2

-1

0

1

2

3

4

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
pH

lo
g

N
p

(m
g/

L)
NpO2 at 25°C Np205 at 25°C Wilson 1990a
Wilson 1990b ANL High Drip Tests ANL Low Drip Tests
NpO2 100°C NpO2 100°C, +2sigma NpO2 100°C, -2sigma

• Several recent studies indicate Np retention in uranyl solids – although 
mechanism is uncertain
– Burk et al (2004), Burns et al (2004), Douglas et al (2004), Friese et al (2004), 

Cunnane et al (2004)
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Saturated Zone Alluvial Investigations
Nye County EWDP-22S
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Recent Nye County 
Tracer Test Results
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• Single-well test with 
~3-day shut-in 
period using iodide 
and fluorobenzoic
acid (FBA)

• Single-well test with 
~30-day shut-in 
period using iodide 
and a 2nd 
fluorobenzoic acid 
(FBA)

• Test analyses 
ongoing
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ICRP 72 Dosimetry Models

• Peer Review of DOE Biosphere Model by International 
Atomic Energy Agency (IAEA), recommended use of more 
modern dosimetric data
– International Commission on Radiological Protection 72 

provides updated models and related parameters for 
calculation of exposure from radioactive materials

• NRC has granted licensee requests to use revised ICRP 
internal dosimetry models on a case-by-case basis 
(SECY-01-0148).  NRC staff noted:
– it is generally agreed among the national and 

international scientific community that the newer models 
provide more accurate dose estimates than the models 
used in Part 20

• EPA has used these updated models in its activities 
addressing the Comprehensive Environmental Response, 
Compensation and Liability Act (CERCLA) activities
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Biosphere Pathway Contribution
Using ICRP 72 Dosimetry Models
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Seismic-Induced 
Mechanical Damage Effects

• Seismic-induced mechanical damage is a 
function of
– magnitude of event which is a function of recurrence 

probability 

– peak ground velocity (PGV)  

– model of mechanical damage

• Recurrence probability and PGV were discussed 
with NWTRB by John Ake in May and September 
2004

• Mechanical damage representation is a function 
of end constraints on model



Revised Seismic Mechanical Damage Models

• Constrained model (upper right) 
conservatively assumed a waste 
package confined within closed 
surfaces representing the adjacent 
waste packages, drift walls and roof

• More reasonable representation 
(lower right) assumes a string of waste 
packages capable of synchronous 
motion

• Analyses underway for open and 
collapsed emplacement drifts

• Parametric analysis of waste packages 
response to 17 potential ground 
motions at postclosure annual 
probability levels of 10-5, 10-6 and 10-7

• Results to date indicate a difference of 
about a factor of 5 in waste package 
end-to-end impacts and impact relative 
velocity
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Aeromagnetic Data Interpretation 
of Potential Buried Volcanic Centers – History

• Eight aeromagnetic 
anomalies (possible buried 
basalt) known at time of 
1996 Probabilistic Volcanic 
Hazard Assessment (PVHA) 
expert elicitation (in green)

• Fifteen additional 
anomalies identified since 
1996 in ground and 
aeromagnetic surveys 
(O’Leary et al, 2002) 
(in yellow)

• Buried basalt identified in 
four boreholes (ages in 
millions of years)
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2004 Yucca Mountain Aeromagnetic Survey
• High-resolution, low altitude 

helicopter survey designed to 
optimize detection of 
subsurface basaltic features

• East-west flight lines spaced  
60 m apart

• North-south tie lines spaced 
600 m apart

• Total of 16,000 km of flight line 
data acquired, covering an area 
of approximately 870 km2
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2004 Aeromagnetic Results and Interpretation

• Map emphasizes shallow, 
high-amplitude magnetic 
features

• Analytic signal in Crater 
Flats (Q and P) likely 
represent faulted tuff

• Drilling (stars) will evaluate 
presence of basalt and, if 
present, the age

• Provide input to PVHA 
update (ongoing)
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Summary

• Collection of scientific data continues

• These data are being used to
– support the evaluation of the relevance of particular 

FEPs

– support (or revise) the models and parameters used in 
support of the TSPA and SAR

• Scientific testing will continue through the 
Performance Confirmation period
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