

U.S. Department of Energy

Project Operational Thermal Management Strategy

Presented to: Nuclear Waste Technical Review Board

Presented by: **Paul Harrington Office of Repository Development U. S. Department of Energy**

February 09, 2005 Las Vegas, Nevada

Introduction

- Thermal management approach
 - Integrated waste stream management
 - Thermal design requirements and criteria
 - Design features
 - Concept of operations
 - Ongoing evaluations

DRAFT Integrated Waste Stream Management

- Waste stream management
 - Starts at utility and DOE sites
 - Use waste generator records to derive thermal content
 - Continues throughout repository preclosure period
 - Waste form thermal content
 - Commercial spent nuclear fuel (CSNF) heat load is key variable
 - Age young CSNF to meet thermal goals
 - Blend CSNF to meet thermal goals

DRAFT Integrated Waste Stream Management

- Waste stream management
 - DOE Design Basis Waste Stream report used for planning
 - YFF5 or YFF10: Youngest Fuel First, minimum age out of reactor
 - Average waste stream (YFF10)
 - CSNF 17 yrs out of reactor, 4 percent enrichment,
 - 44 GWd/MTHM burnup
 - WP emplacement follows nominal pattern, interspersing CSNF waste packages (WPs) with cooler DOE SNF and high-level waste (HLW) WPs
 - Actual emplacement pattern may vary, but thermal criteria must be met
 - Will require alternating emplacement of hotter and cooler WPs

DRAFT Integrated Waste Stream Management (Continued)

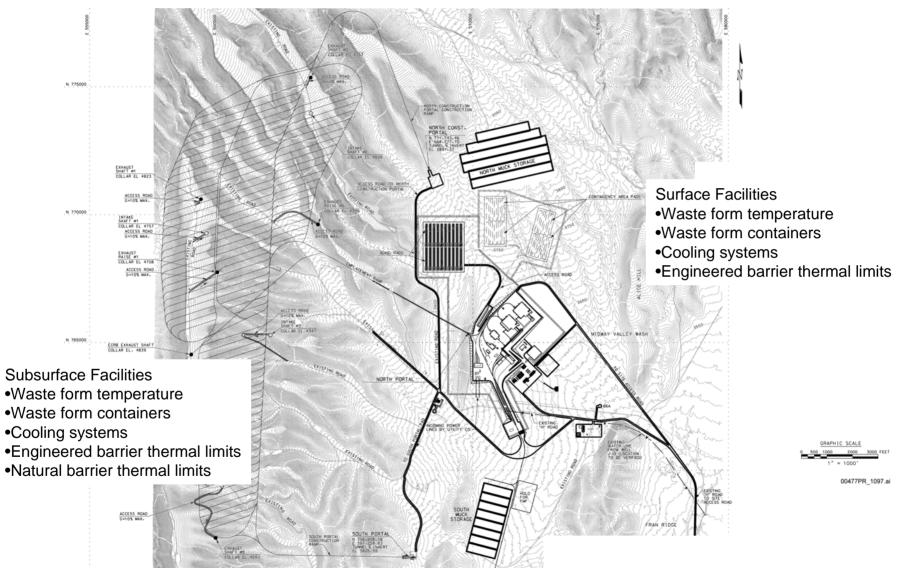
- Waste stream management tools
 - Total System Model evaluates entire OCRWM system, including throughput
 - Throughput modeling evaluates facilities and emplacement operations
 - Includes waste receipt, SNF assembly management, aging needs, WP loading and emplacement
 - TSPA evaluates postclosure performance

DRAFT Thermal Design Requirements and Criteria

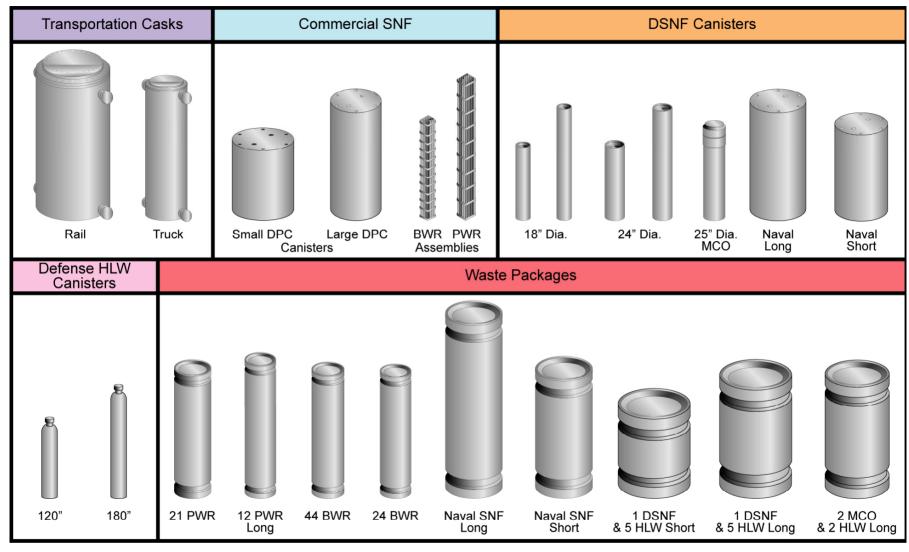
- Waste forms
 - CSNF- maintain cladding below allowable temperature limits
 - Surface operations 400°C normal
 - Surface operations off-normal limits under development
 - Subsurface operations and postclosure 350°C
 - DOE SNF and HLW- maintain canisters below allowable temperature limits
 - Surface and subsurface operations- various SNF and canister temperatures

DRAFT Thermal Design Requirements and Criteria (continued)

- Natural and engineered barriers
 - Emplacement drift wall temperature 200°C max
 - Emplacement drift rock pillar- center portion below 96°C
 - Waste package surface temperature 300°C max
 - Waste package thermal power 11.8 kW max at emplacement
 - Initial maximum average thermal line load 1.45 kW/m


DRAFT Thermal Design Requirements and Criteria (continued)

- Repository closure
 - Thermal pulse after closure does not exceed
 - Emplacement drift wall 200°C
 - Waste package surface 300°C
 - CSNF cladding 350°C
 - HLW 400°C
 - Thermal conditions important for closure
 - Repository temperature at closure
 - Repository thermal power at closure
 - Repository thermal power rate of change
 - Performance Confirmation to confirm thermal calculations


Thermal Management

Department of Energy • Office of Civilian Radioactive Waste Management YMHarrington_NWTRB_020905_.ppt

DRAFT Waste Forms and Waste Packages

Drawing Not To Scale 00349DC 002a.ai

Department of Energy • Office of Civilian Radioactive Waste Management YMHarrington_NWTRB_020905_.ppt

Thermal Management Design Features

- Repository systems, structures and components performing thermal management functions
 - Transportation casks
 - Waste package systems
 - Spent nuclear fuel aging system
 - Surface waste processing facilities
 - Surface HVAC systems
 - Emplacement and retrieval system
 - Subsurface facility
 - Subsurface ventilation system

Thermal Management Concept of Operations

- Surface facilities
 - Generator records evaluated prior to waste shipment to determine waste disposition upon arrival at repository
 - Into WPs for emplacement or into aging casks to aging pad
 - Will possess wide range of waste characteristics, depending upon inventory of waste shipper
 - Waste processed through waste transfer facilities
 - CSNF exceeding emplacement criteria sent to aging
 - Buffer areas and aging pads support limited campaigning of like waste forms
 - Interspersed emplacement of WPs affects extent of campaigning

- Surface facilities (continued)
 - Facilities and systems designed to maintain thermal limits
 - Dry Transfer Facility (DTF) includes staging for 48 PWR and 72 BWR SNF assemblies and 10 DOE SNF or HLW canisters
 - Canister Handling Facility (CHF) includes staging for 10 DOE SNF or HLW canisters
 - Fuel Handling Facility (FHF) includes cell for aging cask in lieu of staging area
 - Transfer cells not inerted
 - Thermal analyses for bounding waste form heat loads
 - Thermal analyses for off normal conditions (e.g., loss of HVAC)

- Aging pads
 - Aging casks allow assemblies to thermally cool until CSNF meets emplacement criteria
 - Up to 21,000 MTHM capacity
 - Potentially utilizes various types of casks to accommodate various types of CSNF
 - Potentially includes capability for aging existing dualpurpose canisters (DPCs)

- Waste packages
 - WP loading controls to be developed
 - Address thermal, criticality, shielding criteria
 - May be similar to controls on loading existing dry casks
 - Primary CSNF WPs have capacity of 21 PWR or 44 BWR assemblies
 - A 12 PWR WP is available for longer SNF, but can also be used for particularly hot SNF assemblies to maintain overall WP thermal output limit
 - 21 PWR and 44 BWR WPs could be short loaded to meet thermal limits, but would result in inefficient use of WPs and drift length

- Subsurface facilities
 - Facilities and systems designed to maintain thermal limits
 - Duration and flow rates for preclosure ventilation are established to meet thermal limits
 - Approximately 50 years preclosure ventilation planned from start of emplacement
 - Waste packages and cladding can withstand extended interruptions in ventilation
 - Initial postclosure conditions must be met prior to closure

Typical Aging Facility

Department of Energy • Office of Civilian Radioactive Waste Management YMHarrington_NWTRB_020905_.ppt

Thermal Management Ongoing Evaluations

- Throughput modeling
 - Throughput capability of waste handling facilities
 - System optimization
 - Safety and operational evaluations (operator dose, minimize waste form handling operations, safety analysis input)
 - Waste package and aging cask loading
 - Emplacement drift loading
- Thermal evaluations
- Handling CSNF in air
 - Effects of air on CSNF during handling operations

DRAFT

Thermal Management Ongoing Evaluations (continued)

- Total System Model
 - Effects of varying waste stream on facility operations
 - Durations of facility operations
 - Optimization of operations
- TSPA
 - Evaluation of postclosure performance
- Preclosure Safety Analysis
 - Effects of thermal management on compliance with preclosure performance objectives

Summary

- Thermal content of CSNF requires aging
- Aging systems will be similar to existing dry cask storage facilities
- Ventilation is required to meet thermal limits in both surface and subsurface facilities
- Thermal goals must be satisfied before repository closure
- Continuing work to confirm current analyses regarding facility throughputs and thermal-related effects of air on CSNF

