

U.S. Department of Energy

Effects of Dust Deliquescence on Localized Corrosion of the Waste Package Outer Barrier (Alloy 22)

Presented to: Nuclear Waste Technical Review Board

Presented by: Gabriel Ilevbare Senior Scientist Waste Package Modeling and Testing

Contributors: Kevin Mon, Chris Orme, Tiangan Lian, Susan Carroll, Greg Gdowski, Gerald Gordon, Gopal De, Robert Etien and Steve Gordon

November 8-9, 2005 Las Vegas, Nevada

Focus

- Can deliquescent brines support localized corrosion at high temperatures in repository environments?
- If initiated will localized corrosion stifle?

Testing Objective

- Evaluate the bounds of Alloy 22 localized corrosion resistance
 - In simulated dust deliquescent environments (at 1 atm)
 - In environments not possible in the repository at very high temperature and pressure (using autoclaves) (> 1 atm)
 - Autoclaves provide high temperature and high pressure environments (~14 atm) which allow for greater [CI⁻] and lower [NO₃⁻] to [CI⁻] ratios than possible in the repository at 1 atm.
 - Allows investigation of the effect of extended exposure time
 - No limitations on solution volume or amount of reactants

Types of tests

- Cyclic polarization and immersion tests at 1 atm and elevated temperatures
- Autoclave immersion tests (liquid and vapor phase) at elevated temperatures and pressures

Minimum NO₃⁻ to Cl⁻ Ratios Increase with Temperature

- Minimum NO₃⁻/Cl⁻ ratios increase with temperature
 - At 120°C, the minimum ratio is about 3 and increases to about 25 at 160°C
 - The higher the [NO₃-] the less likely it is that LC* will occur

Department of Energy •Office of Civilian Radioactive Waste Management

There is an Abundance of NO₃⁻ in Na⁺, K⁺, NO₃⁻,Cl⁻ Brines at Elevated Temperature

- Maximum solubility of Cl⁻ in NO₃⁻ brines is ~9 m at zero nitrate and decreases to ~4 m as temperature reaches 160°C
- Deliquescent brines are nitrate rich and chloride poor
- Deliquescent brines are not expected to promote LC*

Behavior of Alloy 22 in NO₃^{-/}Cl⁻ Deliquescent Environments (Conducted at 1 Atmosphere)

Department of Energy • Office of Civilian Radioactive Waste Management YMllevbare NWTRB 1108-905.ppt

Testing Conditions

Aim: To Investigate Resistance of Alloy 22 in Deliquescent Brines

• Conditions:

- Temperature: 110 to 150°C
- Chloride: 0 to 8 molal (Cl⁻ added as equimolal Na⁺, K⁺)
- Nitrate/Chloride ratio: 0 to 100 (NO₃⁻ equimolal Na⁺, K⁺)
- Deaerated solutions
- These represent deliquescent brines
- Have unlimited solution volume or amount reactants
- Atmospheric pressure (bench top)
- OCP* Monitoring (24 hrs), Cyclic Polarization of Alloy 22 Multiple Crevice Assembly (MCA)

***OCP: Open Circuit Potential**

Department of Energy •Office of Civilian Radioactive Waste Management YMllevbare_NWTRB_1108-905.ppt

Simulated Aqueous Dust Deliquescent Environments

All salts added as equimolal concentrations of Na⁺ and K⁺ salts

[Cl ⁻] (Molal)	[NO ₃ ⁻] (Molal)	[NO ₃ ⁻]/[Cl ⁻] (Ratio)	Temperature (°C)	
8	0	0	110	
8	0.8	0.1	110	
8	1.6	0.2	110	
8	2.4	0.3	110	
8	4	0.5	110	
6	6	1	110	
4	42	10.5	110, 125	
2	42	21	110, 125	
1	42	42	110, 125	
0	42	undefined	110, 125	
3	76	25.3	140	
1	72	71 140		
1	100	100	150	

Passive Region Lengthens with NO₃⁻ Increase

Alloy 22 in 8.0 Molal [CI⁻] at [NO₃⁻]/[CI⁻] Ratios of 0, 0.1, 0.2 and 0.3 at 110°C

Department of Energy •Office of Civilian Radioactive Waste Management YMllevbare NWTRB 1108-905.ppt

E₂₀ and E_{r1} Rise with [NO₃⁻]/[Cl⁻] Ratio at Constant Temperature in Cyclic Polarization Tests

 E_{corr} , E_{20} and E_{r1} As a Function of $[NO_3^-]/[CI^-]$ Ratio at 8.0 Molal $[CI^-]$ at 110°C

Abundant Nitrate Inhibits Localized Corrosion at High Temperature

Corrosion Resistance Improves with Increase in [NO₃⁻]/[Cl⁻] Ratio in Cyclic Polarization Tests

 E_{corr} , E_{20} and E_{r1} As a Function of $[NO_3^-]/[Cl^-]$ Ratio at 0 - 8.0 Molal [Cl⁻] at 110 - 150°C

Department of Energy • Office of Civilian Radioactive Waste Management YMIlevbare NWTRB 1108-905.ppt

Behavior of Alloy 22 in Non-Repository Environments (Autoclave) NO₃⁻/Cl⁻ Tests

Department of Energy •Office of Civilian Radioactive Waste Management YMIlevbare_NWTRB_1108-905.ppt

Autoclave Experimental Conditions

Temperature (°C)	NO₃ [−] /CI [−]	NaCl (m)	NaNO₃ (m)	KNO ₃ (m)	Total Molality
120-220	0.05	6.4	-	0.3	6.7
120-220	0.3125	6.4	-	2.0	8.4
120-220	0.5	6.4	_	3.2	8.4
120-160	6.7	2.7	3.4	15.1	21.2

- Aim: Investigate behavior of Alloy 22 at very high temperature
 - <u>Non-creviced</u> foil specimens immersed in liquid and vapor phase
 - 120°C 220°C, 8 months, NO₃⁻/Cl⁻ of 0.05 and 6.7
 - Generally, these environments cannot exist except at high pressure and are not possible in the repository (autoclave pressure ~14 atm)
 - Environments used to probe limits of LC susceptibility of Alloy 22
 - Deaerated solutions
 - Internal pressure in autoclave approximately ~14 atm
 - Foils were 2 mils (~51 μm) thick (approximate thickness of human hair)

Autoclave Experiments

- Allows for higher [CI⁻] and lower [NO₃⁻]/[CI⁻] ratios than possible at 1 atm in Na/K-based electrolytes
- No limitations on solution volume or amount of reactants
- Allows investigation of the effect of extended exposure time

Department of Energy • Office of Civilian Radioactive Waste Management YMIlevbare NWTRB 1108-905.ppt **Autoclave Experiments Result**

No localized corrosion observed on boldly exposed foils specimens

Department of Energy •Office of Civilian Radioactive Waste Management YMllevbare_NWTRB_1108-905.ppt

Stifling of Localized Corrosion in Alloy 22

Department of Energy • Office of Civilian Radioactive Waste Management

There is Preliminary Evidence that Suggests Localized Corrosion will Stifle if it Occurs on Alloy 22

Current density as a function of time

 Even with no cathodic or reactant limitation, crevice corrosion initiated, propagated, then stifled in short-term tests

Department of Energy • Office of Civilian Radioactive Waste Management YMIlevbare_NWTRB_1108-905.ppt

Nitrate Enhances Stifling of Localized Corrosion

- 3.5 m NaCl at 100°C
- $NO_3^{-}/CI^{-} = 0.05 \text{ and } 0.15$
- +100 mV SSC
- Increased NO₃-/Cl⁻ ratio delays initiation and decreases current density of localized corrosion

Enhancement of Stifling by Nitrate is Apparent in the Amount of Dissolution Observed

Department of Energy •Office of Civilian Radioactive Waste Man YMllevbare NWTRB 1108-905.ppt

Summary

- Deliquescent brines are nitrate rich and chloride poor
- Nitrate solubility increases and chloride solubility decreases as temperature increases in Na⁺/K⁺ based deliquescent brines
- Nitrate-rich brines do not support localized corrosion
- There is evidence that stifling will occur if localized corrosion initiates on Alloy 22

