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Outline

• Key processes affecting seepage
• Brief introduction to proposed approach for seepage 

calculations in TSPA
• Prediction of ambient seepage: technical basis, 

assumptions, uncertainties
• Prediction of thermal seepage: technical basis, 

assumptions, uncertainties
• Discussion of seepage calculation results
• Conclusions
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Definitions

• Seepage: dripping of liquid water from 
the formation into an underground 
opening (<< percolation flux) 

• Seepage rate: mass of seepage water per time, given 
for drift section containing one waste package

• Seepage percentage: ratio of seepage rate divided 
by percolation flux across drift footprint

• Seepage fraction: fraction of waste packages 
affected by seepage
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Processes and Factors Affecting 
(Back-to) Ambient Seepage
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Impact of Heat-Induced Coupled 
Processes on Seepage

(distance between drifts not to scale))

Vaporization Barrier

Stress-Induced Changes
in Hydrologic Properties

Mineral-Alteration Changes
in Hydrologic Properties
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Seepage Estimation: General Approach
• Seepage is a complex process depending on various  

factors occurring on different scales
• Key processes and parameters have been evaluated with 

in-situ experiments and modeling studies
• Seepage estimation in TSPA must incorporate relevant 

factors in a realistic yet simplified manner, accounting for 
spatial variability and uncertainty

Seepage Abstraction

Defines the seepage calculation methodology to be used 
in TSPA, integrating the input from various sources
Provides parameter distributions and look-up tables 
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Proposed Seepage Calculation in TSPA
Step 1:  Probabilistic Analysis of Ambient Seepage
- Loop over time, realization, and location in repository
- Use model-derived look-up tables for seepage as a function of key rock 

properties, local percolation flux (with flow focusing), drift shape (intact 
or collapsed)

- Calculate seepage rate (with uncertainty) and seepage fraction

Step 2:  Simplified Treatment of Coupled-Processes
- Adjust ambient seepage rates for heat-induced flow changes 

(vaporization barrier) 
- Account for changes in hydrologic properties as a result of mechanical 

or chemical effects (no adjustment made because effects are small)

Seepage is function of location as a result of spatial variability in rock 
properties and percolation flux, geologic unit, and TH conditions
Seepage is a function of time as a result of climate changes, duration of 
boiling
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Ambient Seepage Testing and Calibration

• Perform liquid-release tests to 
capture all seepage-relevant 
mechanisms (about 100 tests)

• Develop drift-scale heterogeneous 
fracture continuum model

• Use inverse modeling to estimate 
seepage-related parameters for test 
location

• Provide conceptual model and 
calibrated parameters for seepage 
prediction model
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Testing and 
Calibration:

Main Findings
• Test results demonstrate 

capillary barrier behavior and 
flow diversion at drift crown 

• Model accurately captures or 
predicts seepage data for all 
test sites

• Seepage can be described as a 
function of three key seepage 
parameters: permeability, 
capillary strength, and 
percolation flux

• Calibrated effective capillary 
strength accounts for physical 
capillarity plus various small-
scale effects
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Ambient Seepage Prediction Model
• Same conceptual framework as 

calibration model
• Actual drift geometry considered
• No evaporation (see ongoing 

work in S&T program)
• Systematic seepage predictions 

varying the three key parameters 
for seepage

• Model provides look-up table of 
seepage rates (and uncertainty) 
for seepage interpolation in 
TSPA

• Separate look-up tables for 
intact drifts (including moderate 
degradation) and fully collapsed 
drifts

Seepage Look-up Table

blue arrow:  increasing seepage
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Intact vs Collapsed Drifts
• Drift collapse may occur in case of extreme (low-probability) seismic events
• Collapsed drifts will have roughly doubled in size and will be filled with 

fragmented rock material (from drift degradation analysis)
• Capillary-strength difference between intact rock and rubble-filled drift 

remains important factor for flow diversion
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Parameter Distributions for Input
in Look-Up Tables

spatial variability

spatial variability

Effective 
Capillary-Strength

Permeability

Percolation Flux
Maps

Seepage Look-up Table

Ambient 
Seepage rates 
and seepage 

fraction in 
TSPA

(calibration 
data)

(site characterization
data)

(UZ Flow Model
data) Account for spatial variability and 

uncertainty

(intact or collapsed)
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Permeability:  Spatial Variability
over Repository
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Permeability:  Spatial Variability over 
Repository

• Use information from as many air permeability locations 
as possible, starting with ESF/ECRB test locations and 
adding surface-based boreholes

• Perform scaling analysis for measurements conducted 
with different packer length

• Adjust measurements in intact fractured rock for impact 
of drift excavation

• Distinguish between geological units because of 
different fracture permeability characteristics

• Account for uncertainty in spatial variability (small 
sample size) by appropriate uncertainty distributions
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Example: Topopah Spring Lower 
Lithophysal Unit (Tptpll)
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• Spatial variability distribution:  
Log-normal with mean of –11.5 and sigma of 0.47 (in log10)

• Uncertainty distribution (accounting for small sample size):  
Triangular with range of ± 0.9 (in log10)



YMBirkholzer_NWTRB_020106.ppt
Department of Energy   Office of Civilian Radioactive Waste Management

16

Effective Fracture Capillary Strength:  
Spatial Variability over Repository

• Ten calibration values
• Spatial variability and uncertainty 

described by appropriate distributions
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Percolation Flux:  Spatial Variability
over Repository

Steady-state Flow Fields Provided by 3D Mountain Scale UZ Flow Model

• For three climate states (present, monsoon, and glacial transition), with 
instantaneous transition from one state to the other

• For three alternative infiltration scenarios (mean, upper- and lower-bound)
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Flow Focusing:  Sub-Grid Heterogeneity
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• Flow focusing accounts 
for percolation flux 
variability below grid size 
of UZ model

• Distributions of flow 
focusing factors are 
developed by sub-grid 
heterogeneous flow 
models, for wide range of 
parameters and conditions

• Factors are randomly 
sampled and multiplied 
with percolation fluxes 
interpolated from UZ Flow 
Model

• Resulting distribution of 
percolation fluxes is wider 
than original  
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Coupled Processes 
Modeling and Testing

• Thermal Seepage Model:                    
Predicts seepage during thermal period for 
different locations in repository

• Conceptual model validated against 
seepage tests and Drift Scale Test

• Conceptual model is supported by 
alternative finger-flow model and by 
application to CNWRA* heater test

• In-drift vapor transport is neglected (see 
ongoing work in S&T program)

Thermal Seepage Model is complemented 
by geomechanical/geochemical models
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* Center for Nuclear Waste Regulatory Analysis, Southwest Research Institute
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Thermal Seepage 
Model Results

• Vaporization barrier is 
effective for above-boiling 
conditions

• Thermal seepage is always 
less than ambient seepage

• Resaturation leads to 
“delayed” seepage 
initiation

• Consistent result over wide 
range of seepage-relevant 
parameters and conditions
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Thermal Seepage Abstraction Method

Time
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Seepage Look-up Table
Provides quantitative estimates of 

ambient seepage

TSPA EBS TH Model
Provides quantitative estimates of 

drift wall temperature

Abstracted 
Seepage (purple)

Vaporization barrier is NOT considered for collapsed drifts 
(uncertainties regarding properties of rubble material)

Example results
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Seepage Abstraction Summary
• Ambient seepage is calculated from seepage look-up tables using 

parameter distributions for permeability, effective capillarity, and 
percolation flux (including flow focusing)

• Intact and moderately degraded drifts have different look-up table 
than collapsed drifts

• Lithophysal and nonlithophysal units have different parameter 
distributions

• No seepage occurs at drift wall temperatures above 100oC
• Thermal seepage is equal to ambient seepage for drift wall 

temperatures below 100oC
• No seepage changes due to geomechanical/geochemical processes
• No flow diversion for the case of volcanic intrusion
• No seepage during preclosure
• No seepage increase from rock bolts
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Seepage Sensitivity Study

• Probabilistic calculation of seepage using a Mathcad
spreadsheet 

• Simplified random procedure with sample size 10,000
• No explicit consideration of drift location, vaporization 

barrier, and drift collapse

Demonstrate barrier capabilities of UZ
Evaluate sensitivities in abstraction process
Similar probabilistic evaluation showed qualitative 
agreement with South Ramp seepage observations 
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Mean Seepage Rate of all 
Non-Zero Seepage Samples 

(for intact drift in Tptpll)
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Sensitivities

Intact Drift Collapsed Drift
Seepage Percentage 7.5 17.5
Seepage Fraction 24.2 49.3
Seepage Rate* 156.6 358.2

(mean infiltration scenario, glacial transition climate)

Intact vs Collapsed Drifts

Tptpll Tptpmn
Seepage Percentage 7.5 18.8
Seepage Fraction 24.2 50.1
Seepage Rate* 156.6 205.7

Tptpll vs Tptpmn

* in kg/yr per waste package for all non-zero seepage samples
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Sensitivities

Considered If not considered
Seepage Percentage 7.5 3.0
Seepage Fraction 24.2 16.4
Seepage Rate* 156.6 90.9

(mean infiltration scenario, glacial transition climate, Tptpll)

Spatial Variability in k and α

Considered If not considered
Seepage Percentage 7.5 5.7
Seepage Fraction 24.2 21.0
Seepage Rate* 156.6 136.2

Uncertainty in k and α

* in kg/yr per waste package for all non-zero seepage samples
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Conclusions
• Seepage predictions in TSPA will be soundly based on 

abstraction of various input sources, including field 
tests, process models, and site characterization 

• Ambient seepage is sampled using predictive seepage 
estimates without further simplification

• Impact of heat-induced coupled processes is accounted 
for by bounding-case treatment

• Spatial variability and uncertainty of key processes and 
key parameters are adequately considered

• Seepage varies in time and space
• Flow diversion and vaporization barrier above waste 

emplacement drifts are effective in preventing seepage
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