
Mass and Activity of Key Radionuclides 
Potentially Released from the
Unsaturated Zone Over Time
Presented to:
Nuclear Waste Technical Review Board

Presented by:
Bruce A. Robinson
Los Alamos National Laboratory

February 01, 2006
Las Vegas, Nevada



YMRobinson_NWTRB_020106.ppt
Department of Energy   Office of Civilian Radioactive Waste Management

2

Outline
• Unsaturated Zone (UZ) Radionuclide Transport –

Conceptual Models and Technical Basis
• Implementation of Unsaturated Zone Radionuclide 

Transport model for Total System Performance 
Assessment (TSPA)

• Results
– Representative case
– Sensitivity to flow model parameters
– Diffusion processes and parameters
– Fracture versus matrix releases
– Spatial variability

• Conclusions
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• Combined fracture and 
matrix flow: dual 
permeability model 
formulation

• Radionuclide transport 
through fractures and 
matrix: advection, 
diffusion, sorption, 
colloid-facilitated 
transport

• Radionuclide transport 
is simulated using 
ambient flow fields

• Releases to either the 
fractures or matrix

Unsaturated Zone Transport
Conceptual Model
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Scientific Basis

• Fracture vs. matrix flow
– Busted Butte experiment results confirm matrix flow in vitric 

Calico Hills units
– Alcove 8, Niche 3 results confirm the process of fracture flow and 

matrix diffusion in the TSw units
– Cl-36 results suggest the possibility of fracture-dominated 

transport of conservative species through the unsaturated zone
– Model of combined fracture and matrix flow and transport is 

consistent with many observations of solute transport in vadose 
zones (beyond Yucca Mountain)

• Flow and Transport Parameters
– Process flow and transport models are informed by data sets 

either by direct calibration (e.g. water content, matric potential) or 
by consistency checks (Cl-36, C-14)
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Implementation of UZ Radionuclide 
Transport in TSPA Model

• Dual permeability particle tracking model, with 
probabilistic travel time delays to account for sorption 
and diffusion

• Full decay-chain capability
• Particle release locations and mass per particle are 

determined dynamically from engineered barrier system 
radionuclide mobilization and transport calculations

• Particles are released into the fracture or matrix 
continuum

• Radionuclide mass versus time at various locations at the 
water table is computed and input to the saturated zone 
model

• Validation achieved by comparison to 1, 2, and 3D 
models, including the UZ transport process model
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Radionuclides Considered
• Conservative: C-14, I-129, Tc-99
• Weakly Sorbing: Np-237, U-232, U-234, U-235, U-236, 

U-238
• Strongly Sorbing: Am-241, Am-243, Cs-135, Cs-137, 

Pa-231, Pu-236, Pu-239, Pu-240, Pu-242, Ra-226, 
Sr-90, Th-229, Th-230, Th-232

• Colloid-Facilitated Transport: most strongly sorbing 
radionuclides
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Advective Transport

• 3D, steady state, dual-
permeability  flow fields from 
UZ flow model

• Instantaneous transition of 
flow field from one climate 
state to another

• Water table rise for future, 
wetter climates

• Uncertainty from infiltration 
model is propagated through 
the UZ transport model

• Sensitivity to flow-model 
parameters is explored 
through sensitivity analyses In
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Transport Parameters and Uncertainties
• The unsaturated zone transport model incorporates 

probabilistically defined parameters to propagate 
uncertainty through the UZ model

• Sorption – reversible, equilibrium sorption model
– Distributions developed for each radionuclide
– Sorption to colloids is included

• Diffusion
– Diffusion coefficient distribution from laboratory measurements
– Uncertainty distributions for geometric parameters 

(aperture, fracture spacing) 
– Conceptual-model uncertainty for fracture-matrix interactions

• Colloid Transport Properties
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Mathematical Implementation Using 
Particle Tracking – Colloid Transport Model
• Reversible Sorption Type 

Colloid
– Colloid partitioning coefficient (Kc) describes the relative amount of 

radionuclide on colloids versus that in 
the aqueous phase

– Only aqueous phase radionuclides can 
sorb or diffuse into the rock matrix

• Irreversible Sorption Type 
Colloid

– Advective transport without diffusion 
into the rock matrix

– Size exclusion model to prevent 
transport from fractures into some 
matrix units

– Retardation via reversible filtration 
within the fracture continuum

– A small fraction of the colloid inventory 
transports without retardation due to 
filtration (the “fast fraction”)
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Results – Normalized Breakthrough Curves
• This breakthrough curve (BTC) method measures the 

model-predicted distribution of arrival times at the 
water table
– Representative case and other sensitivity analyses assume a 

release over the entire repository footprint
– Method – particles are introduced at time 0, BTC is the cumulative 

number that arrive at the water table at various times
– Curves are normalized to the number of particles introduced, so 

should approach 1 at long times in the absence of radioactive 
decay

– Radionuclides participating in decay chains are introduced both 
as the radionuclide itself and as a parent which decays to the 
radionuclide – because all species are introduced in the 
simulation in this way, a few radionuclide BTCs go above 1
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Results – Representative Case,
Various Radionuclides

Glacial-transition climate, mean infiltration scenario

• Colloidal species travel 
most rapidly through 
the UZ, and have the 
narrowest distribution 
of arrival times

• Conservative and 
sorbing species 
migrate more slowly

• Distribution of arrival 
times are much broader 
due to matrix diffusion

• Radioactive decay 
reduces the activity of 
many radionuclides in 
the UZ Time (years)
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Results – Sensitivity to Infiltration Scenario
Present-day climate

• Comparisons 
illustrate the TSPA 
abstraction model 
reproduces the 
process model 
results

• Infiltration 
uncertainty has a 
dramatic impact on 
transport model 
results
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Sensitivity to Active Fracture Model 
Parameter Gamma – Tc-99

Glacial-transition climate, mean infiltration scenario

• Flow model calibrations 
are relatively insensitive to 
several model parameters

• Sensitivity analyses are 
used to explore these 
uncertainties

• Active fracture model 
gamma parameter has a 
moderate impact on the 
breakthrough curve

• TSPA models use flow 
parameters at the 
conservative but 
reasonable end of the 
range
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Sensitivity to Active Fracture Model 
Parameter Gamma – Pu-242

Glacial-transition climate, mean infiltration scenario
• Active fracture model 

gamma parameter 
also has a moderate 
impact on the 
breakthrough curve 
of sorbing 
radionulcides

Other flow model 
parameter results 
(not shown here)

• Other sensitivity 
analyses show low to 
moderate impact of 
flow model parameter 
uncertainties on the 
breakthrough curves
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Sensitivity to Diffusion Coefficient – Tc-99
and Pu-242

Present-day climate, mean infiltration scenario

• Diffusion coefficient has 
a large impact on the 
breakthrough curve

• For fracture transport, 
diffusion subdues the 
transport velocities of 
radionuclides traveling 
in the fractures by 
enabling migration into 
the slow-moving fluid in 
the rock matrix

• The impact of diffusion 
is most prevalent for 
sorbing radionuclides

• Uncertainty in diffusion 
coefficient is captured in 
TSPA model
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Sensitivity to Fracture-Matrix Interaction 
Model – Tc-99

Glacial-transition climate, mean infiltration scenario

• The conceptual model 
uncertainty associated 
with the diffusion to 
and from the fractures 
(fracture-matrix 
interaction model) has 
a significant impact on 
breakthrough curves

• Less early-time 
breakthrough is 
predicted with the 
(alternative) discrete 
fracture model because 
sharp gradients near 
the fracture are 
captured in this model
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Sensitivity to Fracture-Matrix Interaction 
Model – Pu-242

Glacial-transition climate, mean infiltration scenario

• The impact is even 
more dramatic for 
sorbing radionuclides

• The TSPA model 
conservatively uses the 
dual-k model

• A discrete fracture 
model (or equivalent) 
could be used in the 
future if the model is 
validated against field 
data

• Alternatively, a dual-k 
model with enhanced 
diffusion coefficients 
could be used Time (years)
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Fracture Versus Matrix Releases
Tc-99, glacial-transition climate, mean infiltration scenario, point release

• Flow is fracture-
dominated at the 
repository horizon

• Matrix releases have 
significantly longer 
travel times because 
radionuclide must 
diffuse to the flowing 
fractures to travel 
rapidly

• Smaller diffusion 
coefficients yield 
longer travel times (the 
opposite of the fracture 
release case) Time (years)
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Spatial Variability – Median Travel Time of Tc-99
Glacial-transition climate, mean infiltration scenario

• Large variability in 
breakthrough curve depending 
on where the releases occur 

– Hydrogeologic variability
– Percolation flux variability

• If only a few waste packages 
fail, this results in an 
uncertainty in travel time

• If most packages fail, this 
effect results in a spread in the 
distribution of arrival times

• All distributed release 
simulations presented earlier 
include this variability in the 
breakthrough curves
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Conclusions
• Radionuclide transport in the Unsaturated Zone for TSPA is 

simulated considering all relevant transport processes
• Uncertainties that are most important to the travel times 

through the UZ are:
– Infiltration rate
– Diffusion model parameters
– Diffusion conceptual model

• Uncertainties in flow model parameters have low to moderate 
impact on the travel times

• TSPA model takes a reasonably conservative approach for 
uncertainties not directly represented via parameter 
uncertainty distributions

• Matrix releases yield much longer travel times
– Fracture releases – lower D yields shorter travel times
– Matrix releases – lower D yields longer travel times

• Spatial variability of travel times results from different 
percolation fluxes and hydrogeology across the repository
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