

U.S. Department of Energy

Mass and Activity of Key Radionuclides Potentially Released from the Unsaturated Zone Over Time

Presented to: Nuclear Waste Technical Review Board

Presented by: Bruce A. Robinson Los Alamos National Laboratory

February 01, 2006 Las Vegas, Nevada

Outline

- Unsaturated Zone (UZ) Radionuclide Transport Conceptual Models and Technical Basis
- Implementation of Unsaturated Zone Radionuclide Transport model for Total System Performance Assessment (TSPA)
- Results
 - Representative case
 - Sensitivity to flow model parameters
 - Diffusion processes and parameters
 - Fracture versus matrix releases
 - Spatial variability

Conclusions

Unsaturated Zone Transport Conceptual Model

- Combined fracture and matrix flow: dual permeability model formulation
- Radionuclide transport through fractures and matrix: advection, diffusion, sorption, colloid-facilitated transport
- Radionuclide transport is simulated using ambient flow fields
- Releases to either the fractures or matrix

Department of Energy •Office of Civilian Radioactive Waste Management YMRobinson_NWTRB_020106.ppt

abq0063G100 a

Scientific Basis

- Fracture vs. matrix flow
 - Busted Butte experiment results confirm matrix flow in vitric Calico Hills units
 - Alcove 8, Niche 3 results confirm the process of fracture flow and matrix diffusion in the TSw units
 - CI-36 results suggest the possibility of fracture-dominated transport of conservative species through the unsaturated zone
 - Model of combined fracture and matrix flow and transport is consistent with many observations of solute transport in vadose zones (beyond Yucca Mountain)
- Flow and Transport Parameters
 - Process flow and transport models are informed by data sets either by direct calibration (e.g. water content, matric potential) or by consistency checks (CI-36, C-14)

Implementation of UZ Radionuclide Transport in TSPA Model

- Dual permeability particle tracking model, with probabilistic travel time delays to account for sorption and diffusion
- Full decay-chain capability
- Particle release locations and mass per particle are determined dynamically from engineered barrier system radionuclide mobilization and transport calculations
- Particles are released into the fracture or matrix continuum
- Radionuclide mass versus time at various locations at the water table is computed and input to the saturated zone model
- Validation achieved by comparison to 1, 2, and 3D models, including the UZ transport process model

Radionuclides Considered

- Conservative: C-14, I-129, Tc-99
- Weakly Sorbing: Np-237, U-232, U-234, U-235, U-236, U-238
- Strongly Sorbing: Am-241, Am-243, Cs-135, Cs-137, Pa-231, Pu-236, Pu-239, Pu-240, Pu-242, Ra-226, Sr-90, Th-229, Th-230, Th-232
- Colloid-Facilitated Transport: most strongly sorbing radionuclides

Advective Transport

- 3D, steady state, dualpermeability flow fields from UZ flow model
- Instantaneous transition of flow field from one climate state to another
- Water table rise for future, wetter climates
- Uncertainty from infiltration model is propagated through the UZ transport model
- Sensitivity to flow-model parameters is explored through sensitivity analyses

Climate-related variability

Transport Parameters and Uncertainties

- The unsaturated zone transport model incorporates probabilistically defined parameters to propagate uncertainty through the UZ model
- Sorption reversible, equilibrium sorption model
 - Distributions developed for each radionuclide
 - Sorption to colloids is included
- Diffusion
 - Diffusion coefficient distribution from laboratory measurements
 - Uncertainty distributions for geometric parameters (aperture, fracture spacing)
 - Conceptual-model uncertainty for fracture-matrix interactions
- Colloid Transport Properties

Mathematical Implementation Using Particle Tracking – Colloid Transport Model

- Reversible Sorption Type Colloid
 - Colloid partitioning coefficient (K_c) describes the relative amount of radionuclide on colloids versus that in the aqueous phase
 - Only aqueous phase radionuclides can sorb or diffuse into the rock matrix
- Irreversible Sorption Type Colloid
 - Advective transport without diffusion into the rock matrix
 - Size exclusion model to prevent transport from fractures into some matrix units
 - Retardation via reversible filtration within the fracture continuum
 - A small fraction of the colloid inventory transports without retardation due to filtration (the "fast fraction")

- Radionuclide
- Sorbed Radionuclide

Reversible Sorption Type Colloid shown with radionuclide temporarily attached

Reversible Sorption Type Colloid shown without radionuclide attached

Irreversible Sorption Type Colloid shown with radionuclide permanently attached abq0063G031.ai

Results – Normalized Breakthrough Curves

- This breakthrough curve (BTC) method measures the model-predicted distribution of arrival times at the water table
 - Representative case and other sensitivity analyses assume a release over the entire repository footprint
 - Method particles are introduced at time 0, BTC is the cumulative number that arrive at the water table at various times
 - Curves are normalized to the number of particles introduced, so should approach 1 at long times in the absence of radioactive decay
 - Radionuclides participating in decay chains are introduced both as the radionuclide itself and as a parent which decays to the radionuclide – because all species are introduced in the simulation in this way, a few radionuclide BTCs go above 1

Results – Representative Case, Various Radionuclides

Glacial-transition climate, mean infiltration scenario

- Colloidal species travel most rapidly through the UZ, and have the narrowest distribution of arrival times
- Conservative and sorbing species migrate more slowly
- Distribution of arrival times are much broader due to matrix diffusion
- Radioactive decay reduces the activity of many radionuclides in the UZ

Results – Sensitivity to Infiltration Scenario Present-day climate

- Comparisons illustrate the TSPA abstraction model reproduces the process model results
- Infiltration uncertainty has a dramatic impact on transport model results

UZ Transport for Different Infiltration Scenarios ⁹⁹Tc, Black: FEHM Abstraction Model, Red: T2R3D Process Model

Sensitivity to Active Fracture Model Parameter Gamma – Tc-99

Glacial-transition climate, mean infiltration scenario

- Flow model calibrations are relatively insensitive to several model parameters
- Sensitivity analyses are used to explore these uncertainties
- Active fracture model gamma parameter has a moderate impact on the breakthrough curve
- TSPA models use flow parameters at the conservative but reasonable end of the range

Sensitivity to Active Fracture Model Parameter Gamma – Pu-242 Glacial-transition climate, mean infiltration scenario

- Active fracture model gamma parameter also has a moderate impact on the breakthrough curve of sorbing radionulcides
- Other flow model parameter results (not shown here)
- Other sensitivity analyses show low to moderate impact of flow model parameter uncertainties on the breakthrough curves

Sensitivity to Diffusion Coefficient – Tc-99 and Pu-242

Present-day climate, mean infiltration scenario

- Diffusion coefficient has a large impact on the breakthrough curve
- For fracture transport, diffusion subdues the transport velocities of radionuclides traveling in the fractures by enabling migration into the slow-moving fluid in the rock matrix
- The impact of diffusion is most prevalent for sorbing radionuclides
- Uncertainty in diffusion coefficient is captured in TSPA model

Sensitivity to Fracture-Matrix Interaction Model – Tc-99

Glacial-transition climate, mean infiltration scenario

- The conceptual model uncertainty associated with the diffusion to and from the fractures (fracture-matrix interaction model) has a significant impact on breakthrough curves
- Less early-time breakthrough is predicted with the (alternative) discrete fracture model because sharp gradients near the fracture are captured in this model

Department of Energy •Office of Civilian Radioactive Waste Management YMRobinson_NWTRB_020106.ppt

Sensitivity to Fracture-Matrix Interaction Model – Pu-242

Glacial-transition climate, mean infiltration scenario

- The impact is even more dramatic for sorbing radionuclides
- The TSPA model conservatively uses the dual-k model
- A discrete fracture model (or equivalent) could be used in the future if the model is validated against field data
- Alternatively, a dual-k model with enhanced diffusion coefficients could be used

Fracture Versus Matrix Releases

Tc-99, glacial-transition climate, mean infiltration scenario, point release

- Flow is fracturedominated at the repository horizon
- Matrix releases have significantly longer travel times because radionuclide must diffuse to the flowing fractures to travel rapidly
- Smaller diffusion coefficients yield longer travel times (the opposite of the fracture release case)

Spatial Variability – Median Travel Time of Tc-99

Glacial-transition climate, mean infiltration scenario

- Large variability in breakthrough curve depending on where the releases occur
 - Hydrogeologic variability
 - Percolation flux variability
- If only a few waste packages fail, this results in an uncertainty in travel time
- If most packages fail, this effect results in a spread in the distribution of arrival times
- All distributed release simulations presented earlier include this variability in the breakthrough curves

- Radionuclide transport in the Unsaturated Zone for TSPA is simulated considering all relevant transport processes
- Uncertainties that are most important to the travel times through the UZ are:
 - Infiltration rate
 - Diffusion model parameters
 - Diffusion conceptual model
- Uncertainties in flow model parameters have low to moderate impact on the travel times
- TSPA model takes a reasonably conservative approach for uncertainties not directly represented via parameter uncertainty distributions
- Matrix releases yield much longer travel times
 - Fracture releases lower D yields shorter travel times
 - Matrix releases lower D yields longer travel times
- Spatial variability of travel times results from different percolation fluxes and hydrogeology across the repository

