

U.S. Department of Energy

Mass and Activity of Key Radionuclides Potentially Released From Waste Forms, Waste Packages and Drifts Over Time

Presented to: Nuclear Waste Technical Review Board

Presented by: David Sassani, MTS/Golder Associates Inc. Rob Howard, Bechtel-SAIC Company, LLC Contributions from J. Schreiber, Sandia National Labs

February 01, 2006 Las Vegas, Nevada

Source-Term Overview

- Source-Term Model Concepts
- Source-Term Model Integration, Descriptions, and Technical Bases
 - Waste Form Degradation Models
 - Solubility-Limited Concentration Models
- Additional Studies
- Science and Technology Source-Term Targeted Thrust Projects

Source-Term Model Concepts

General Engineered Barrier System Design Features and Materials and Natural Processes

YMSassani_NWTRB_020106.ppt

Waste Form Types

Department of Energy • Office of Civilian Radioactive Waste Management

YMSassani_NWTRB_020106.ppt

UO_{2+x} Corrosion and Uranyl Phase Paragenesis

Finch and Ewing (1992) Journal of Nuclear Materials

- Natural uranyl mineral paragenesis is well defined from numerous observations of uraninite alteration in geologic systems
- Uranyl mineral relations observed in laboratory testing on UO₂ and spent fuel parallel observations of natural alteration

Data from experiments, Argonne National Lab Wronkiewicz, Bates, Gerding, Veleckis & Tani (1992): J. Nucl. Mater. 190, 107-127 Wronkiewicz, Bates, Wolf, & Buck (1996): J. Nucl. Mater. 238, 78-95 Finch, Buck, Finn & Bates (1999): MRS Proc. 556, 431-438

Source-Term Model Integration, Descriptions, and Technical Bases

Connections within the Source-Term Model

Spent Fuel Degradation Model

• Gap and Grain Boundary Instantaneous Release Fractions

Triangular Probability Distribution Functions of Instantaneous Release Fractions

	¹³⁷ Cs (%)	129 (%)	⁹⁹ Tc (%)	⁹⁰ Sr (%)
Арех	3.63	11.24	0.10ª	0.09
Minimum	0.39	2.04	0.01 ^b	0.02
Maximum	11.06	26.75	0.26	0.25

NOTE: ^aRounded up from 0.06. ^bChanged from zero to provide a nonzero minimum.

 Matrix Dissolution Rates Depend on Chemical Conditions and Temperature (Flow Through Tests)

Description of Commercial Spent Nuclear Fuel (CSNF) Matrix Degradation Model

- Mass of exposed fuel depends on cladding failure
- Defective clad splits instantaneously after waste package breach
 - Mass of fuel in split rod available
- Clad split area increases as fuel alters to schoepite (volume increases as rind forms)
 - Porosity of rind treated as uncertain (schoepite values)
 - Alteration rind assumed saturated
 - Water volume into which radionuclides dissolve
 - Diffusive transport path
 - Radionuclides released via
 - Instantaneous gap and grain boundary
 - Matrix degradation

Spent Fuel Matrix Degradation

Figure 6-3. Comparison of the Base-Case Model (pCO3 = 2.7) to the Input CSNF and UO2 Data

- Overall rate depends on temperature, chemical conditions, surface area
 - Under acidic conditions
 - pH, oxygen fugacity
 - Under basic conditions
 - oxygen fugacity, total dissolved carbonate
 - Flow-through testing of Commercial Spent Nuclear Fuel (CSNF) dissolution and UO₂ dissolution at various conditions
- Provides rate radionuclides are potentially available for release
- Concentrations resulting from degradation are calculated with the rind water volume for comparison to limitations from solubility controls

Department of Energy • Office of Civilian Radioactive Waste Management YMSassani_NWTRB_020106.ppt

Np Solubility Models Considered

- Pure Phase Models (thermodynamic data OECD/NEA database)
 - Np₂O₅ metastable Np(V) oxide
 - NpO₂ stable Np(IV) oxide
 - Solution dominated by NpO₂⁺ species (reduction reaction for NpO₂)
- Secondary Phase Models
 - Coprecipitation of Np within uranyl alteration phases
 - Expected that NpO_2^+ would substitute for UO_2^{++} (Burns et al., 1997)
 - Coupled substitution for charge balance
 - Proximal alteration phases (e.g., schoepite) do not appear effective
- Application to Expected System
 - Use NpO₂ within the Package
 - Kinetic barriers for reduction not expected to be issue
 - » Numerous, massive reductants within package (waste form, steels)
 - » Np expected to be Np(IV) within CSNF
 - » Gradual increase of dissolved Np concentration from *undersaturation*
 - Use Np₂O₅ outside the package in the Invert
 - Hedge against uncertain precipitation kinetics of NpO₂

Additional Support for NpO₂ Model

- NpO₂ Formed by Humid Alteration of Np-doped U₃O₈ at Elevated Oxidation Conditions (Finch, 2002)
 - ~3 weeks at 150°C
 - ~16 weeks at 90°C, with Np_2O_5 (less overall reaction progress of U_3O_8 alteration at this temperature)
- Precipitation of NpO₂ from Solution (Roberts et al., 2003)
 - ~3 Months at 200°C

Comparison of Spent Fuel Drip and Batch Dissolution Test Data and Solubility Models

- Spent fuel observations indicate that reasonably long time (years) should be available for precipitation/formation of NpO₂
- Pure phase NpO₂ model (at 25°C) is consistently higher than observations from spent fuel laboratory tests (at 25 and ~85-90°C)
 - Most recent Argonne National Laboratory (ANL) data (Fall 2004) represent 9 years of drip tests

Data Source: Wilson 1990a [DIRS 100949]; Wilson 1990b [DIRS 100793] (Series 2 and Series 3 tests, respectively); and CRWMS M&O 2000 [DIRS 131861]; CRWMS M&O 2000 [DIRS 153105]; and Thomas, 2004 [DIRS 163048] for ANL high-drip and low-drip tests.

- Several recent studies indicate Np retention in uranyl solids although mechanism is uncertain
 - Burns et al., (2004), Buck et al., (2004), Friese et al., (2004), Douglas et al., (2005)
 - Additional studies on Np in CSNF and NpO₂ formation kinetics

Additional Studies

Np and Pu Across CSNF Corrosion Front

- X-ray Absorption Spectroscopy shows Np(IV) in the fuel matrix
- Np/U ratio decreases in ~50µm mixed-valence U(IV)/U(VI) region adjacent to the corrosion front
- Np and Pu peak near the surface of the corroded spent fuel
- Results provide evidence that redox conditions at and near the corroding spent fuel surface control Np behavior
- Np may remain within fuel while the alteration occurs (possible solid solution of NpO₂ within UO₂)

Np Precipitation from Np(V) Solution

• Roberts et al. 2003 @ 200°C

 $NpO_2^+(aq) + 0.5H_2O = NpO_2(s) + H^+(aq) + 0.25O_2(g)$

- X-ray absorption spectra of Np solids indicates that solids isolated after 21 days are Np(IV) precipitates (200, 240, and 280°C)
- Mixed valence Np(IV)/Np(V) precipitate observed at 150°C (XAS)
- Ongoing work addressing
 - Homogenous and heterogeneous precipitation at lower temperatures
 - Temperature-dependent rate for development of Np(IV) solids.

Science and Technology Source-Term Targeted Thrust Projects

Source Term Targeted Thrust

- Research program is focused on the changing conditions over *time*, identifying the *critical processes* within each time interval, and with attention to the *radionuclides* that are the *major contributors to dose*
- Directors:
 - Rodney Ewing, University of Michigan
 - Mark Peters, Argonne National Laboratory

Selected Summary of Research Programs

- SNF dissolution mechanisms and rates
- Formation and properties of U⁶⁺ secondary phases
- Waste form waste package interactions
- Integration of in-package chemical and physical processes

Low pH Single Pass Flow-Through (SPFT) on CSNF

YMSassani_NWTRB_020106.ppt

21

Np⁵⁺ Incorporation into Uranyl Phases

Burns et al. (2004): Radiochimica Acta 92, 151-159

Becquerelite

Synthesis: 0.0825 g UO₃, 0.125 g CaCO₃, 2.07 g H₂O, 0.0016 g Np⁵⁺

Np⁵⁺ in charge: 725 ppm

Np/U ratio: 0.0016 g/0.0687 g = 0.023

Np in crystal by count ratio: 800 ppm

In Package Geochemistry

Corrosion Products

Typical SEM Micrographs Showing Complex Assemblage of Corrosion Products that Formed on A-516 Carbon Steel Coupons Reacted in J-13 Synthetic Groundwater after 109 Days

