

U.S. Department of Energy Office of Civilian Radioactive Waste Management



### **Evolution of Waste Package Environments in a Repository at Yucca Mountain**

Presented to: Nuclear Waste Technical Review Board Workshop on Localized Corrosion

Presented by: Charles R. Bryan Geochemist–Near Field Environment Sandia National Laboratories

September 25-26, 2006 Las Vegas, Nevada

# Evolution of Waste Package Environments in a Repository at Yucca Mountain

# Outline

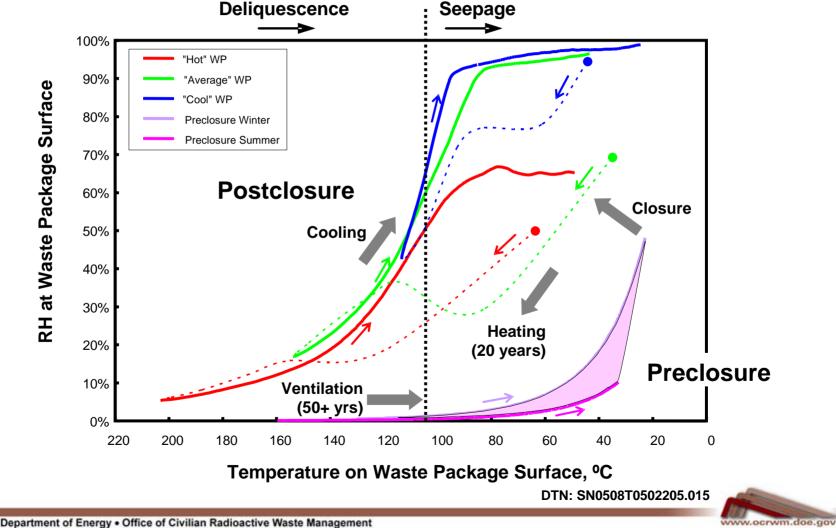
- Temperature/humidity conditions
- Seepage vs. deliquescence comparison
- Deliquescence environment
  - Source of deliquescent salts
  - Salt accumulation and brine volume
  - Processes affecting brine
  - Importance of small brine volume





Evolution of Waste Package Environments in a Repository at Yucca Mountain Outline (cont'd)

- Seepage Environment
  - Near-field water chemistry
  - In-drift water evolution and timing
  - Representation for Total System Performance Assessment (TSPA)
- Summary of Environments






### Evolution of Temperature/Relative Humidity (RH) on the Waste Package (WP) Surface

Deliquescence can occur starting at emplacement

Seepage occurs only after the drift wall temperature cools below 100°C (T<sub>WP</sub> ~105°C)



# **Two Types of Chemical Environments**

### Deliquescence

- Soluble salts deposited on the WP during preclosure
- Drip shields control postclosure dust accumulation
- Multi-salt assemblages control deliquescence at higher T
- Brine compositions become dilute as T↓, RH↑
- Amount of brine contacting metal surfaces is limited
- Chemistry is moderated by contact with rock-forming minerals in dust
- Brines change with time-degassing, deliquescence

### Seepage

- Seepage may occur after cooldown (T<sub>WP</sub> < 105°C)</li>
- WP outer barrier is protected by drip shields
- Residence time (equilibrium with T, RH at WP surface) controls corrosion environment
- Chemical conditions (pH, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>/Cl<sup>-</sup>) are potentially corrosive early during cooldown
- Chemical fractionation may occur during transport



### **Relevant Dust Sources and Composition**

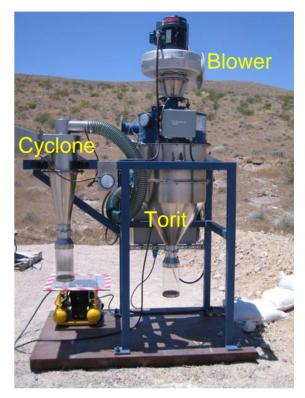
#### Current model is based on two sources of dust:

#### Yucca Mountain tunnel dusts

- Mostly rock forming minerals, <1% soluble salts</li>
- Important deliguescent mineral assemblages:
  - NaCI-KNO<sub>3</sub>
  - NaCI-KNO<sub>3</sub>-NaNO<sub>3</sub>
  - NaCl-KNO<sub>3</sub>-NaNO<sub>3</sub>-Ca(NO<sub>3</sub>)<sub>2</sub>

#### **Atmospheric dust**

- Site-specific data, 6 locations near YM (Reheis and Kihl, JGR, 1995)
  - Highly soluble salts 10.5% (avg.); carbonate 9.5% (avg.)
- Solubles—NADP regional precipitation (rain-out) data:


| Sample #  | Ca<br>mg/L | Mg<br>mg/L | K<br>mg/L | Na<br>mg/L | NH₄⁺<br>mg/L | NO <sub>3</sub> -<br>mg/L | Cl <sup>-</sup><br>mg/L | SO <sub>4</sub> ²-<br>mg/L | NO <sub>3</sub> -/Cl- |
|-----------|------------|------------|-----------|------------|--------------|---------------------------|-------------------------|----------------------------|-----------------------|
| NV00-2002 | 0.48       | 0.044      | 0.013     | 0.059      | 0.26         | 1.14                      | 0.09                    | 0.46                       | 7.3                   |
| NV00-2001 | 0.66       | 0.068      | 0.042     | 0.113      | 0.69         | 2.15                      | 0.16                    | 1.01                       | 7.7                   |
| NV00-2000 | 1.21       | 0.137      | 0.055     | 0.263      | 1.01         | 3.24                      | 0.36                    | 1.35                       | 5.2                   |

NADP/NTN 2000, Part 2. NADP/NTN 2001, Part 2. NADP/NTN 2002, Part 2.



### **Site-Specific Dust Samples for Planned Update**

- South pad cyclonic collector (300 cfm)
  - Began operating 6/29/2005
  - Moisture sensor and controller stop the blower during rainstorms
  - Two collectors in series:
    - Cyclone separator for large particles (>5 μm)
    - Torit filtration separator for smaller particles (to <0.5 μm)</li>

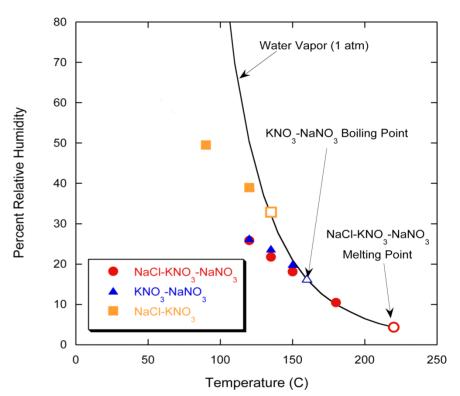


#### Analyses (averages of duplicated analyses)

| Collection<br>Date Ending: | Ca<br>mg/L | Mg<br>mg/L | K<br>mg/L | Na<br>mg/L | NH <sub>4</sub> +<br>mg/L | NO <sub>3</sub> <sup>-</sup><br>mg/L | Cl <sup>-</sup><br>mg/L | SO <sub>4</sub> <sup>2-</sup><br>mg/L | NO <sub>3</sub> -/CI- | HCO <sub>3</sub> <sup>-</sup><br>mg/L | TDS<br>% |
|----------------------------|------------|------------|-----------|------------|---------------------------|--------------------------------------|-------------------------|---------------------------------------|-----------------------|---------------------------------------|----------|
| 03-Aug-05                  | 2260       | 525        | 852       | 950        | 59.8                      | 6690                                 | 548                     | 1580                                  | 7.0                   | 2820                                  | 1.68     |
| 08-Sep-05                  | 1190       | 301        | 664       | 644        | 97.6                      | 3100                                 | 389                     | 725                                   | 4.6                   | 291                                   | 0.79     |
| 10-Jan-06                  | 598        | 1290       | 1640      | 12500      | 112                       | 29000                                | 2600                    | 15600                                 | 6.4                   | 449.5                                 | 6.97     |
| 18-May-06                  | 4370       | 1040       | 1580      | 4510       | 232                       | 16500                                | 1840                    | 6150                                  | 5.1                   | 4310                                  | 4.12     |
| 07-Jun-06                  | 3240       | 758        | 1530      | 2940       | 446                       | 11400                                | 1510                    | 4080                                  | 4.3                   | 4930                                  | 3.14     |



PRELIMINARY DATA - DTN TBD




# **Conditions of Deliquescence**

### **Experimental Data:**

- Ammonium salts thermally decompose and won't contribute to deliquescent mineral assemblages
- NaCI  $KNO_3 \Rightarrow 134^{\circ}C$
- NaCI KNO<sub>3</sub>- NaNO<sub>3</sub> ⇒ Transition to hydrous melt at 220°C, Dryout at ~300°C
- NaCI KNO<sub>3</sub>- NaNO<sub>3</sub>- Ca(NO<sub>3</sub>)<sub>2</sub> ⇒ Boiling point > 400°C
- Maximum WP surface temperature: 203°C (ANL-EBS-MD-000038 Rev. 03)





DTNs: LL050903412251.150 LL050901931032.009 LL050800623121.053



### Processes Affecting Brine on the WP Surface

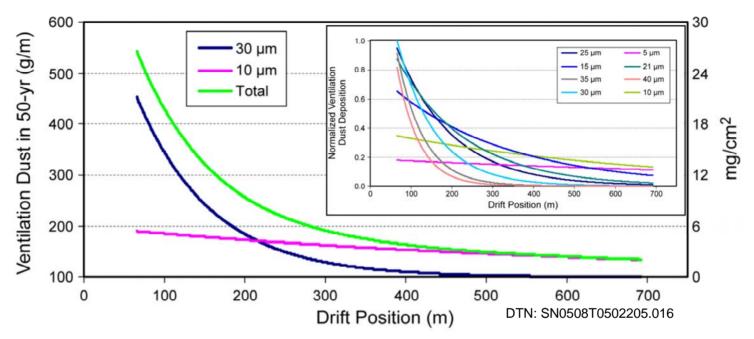
- Acid degassing  $H^+_{(aq)} + CI^-_{(aq)} \Rightarrow HCI_{(aq)} \Rightarrow HCI_{(g)}$ 
  - Ca-Chloride brines degas and dry out (TGA experiments)
  - Multiple-salt assemblages can deliquesce at higher temp.
    - Acid-degassing may occur initially, but less as pH increases
    - Brines may not degas sufficiently to dry out
    - NO<sub>3</sub><sup>-</sup>/Cl<sup>-</sup> minimum ratio is controlled by temperature

### • Reactions with silicate minerals in dust

- Silicate dissolution buffers pH
- Ca, Mg removed from brine as silicate phases
- Deliquescence RH generally increases (brines may dry out)
- Possible consumption of chloride by silicates
  - Scapolite-, cancrinite-, sodalite-, prehnite-group minerals
  - Clays (exchange for hydroxides)
- Dilution with decreasing temperature, increasing humidity



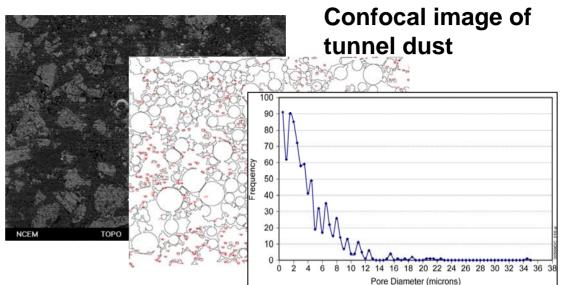
# Salt Amount and Brine Volume

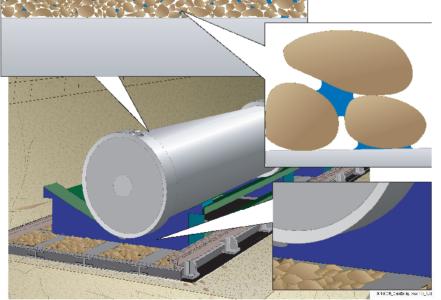

### Estimated amount and composition of dust on WPs

- Atmospheric dust concentration (site-specific): 22 µg/m<sup>3</sup> (typical)
- Drift and ventilation design parameters
- Upper-bound particle size (10 and 30 µm)
- Deposition on first waste package in drift
- Ventilation period: 50 years
- Dry particle deposition model (Sehmel 1980)
- Estimate brine volume
  - Dust soluble salt content (site-specific): 10.5%
  - Ammonium minerals volatilize (~1/2 of total salts)
  - Thermodynamic modeling with Pitzer database






# Salt Amount and Brine Volume



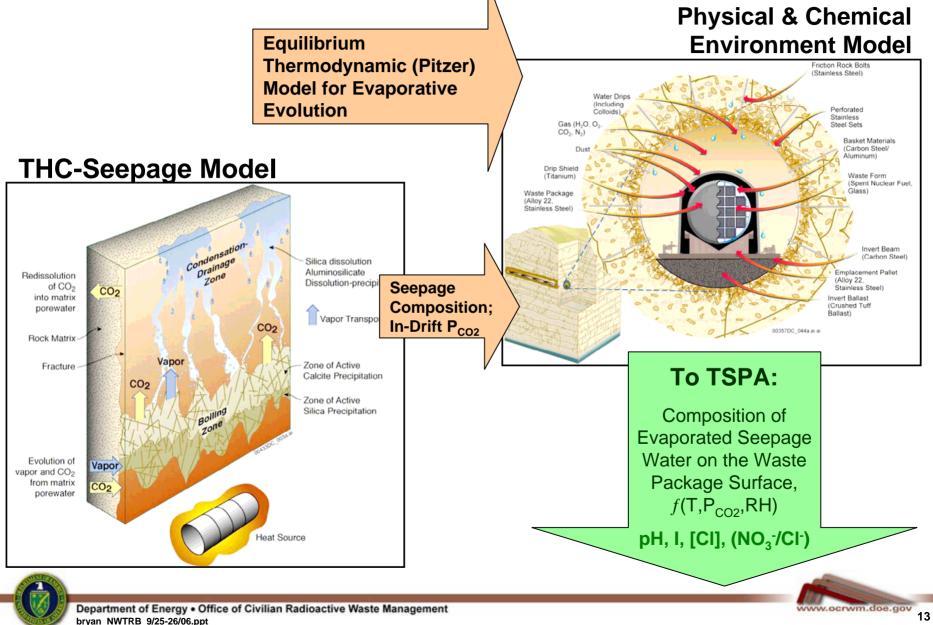

- Upper bound for dust deposited: 26 mg/cm<sup>2</sup>
  - 260 μm thick layer for bulk density 1 g/cm<sup>3</sup>
  - Rock dust may add mass, not soluble salts
- Upper bound brine volume: 1.8 μL/cm<sup>2</sup> (18 μm thick layer)
  - At 120°C; less volume at higher temperatures
  - Assumes all salts are internally mixed (no geometric isolation)
  - Average liquid saturation for dust layer ~ 11% for porosity of 60%
- Lower bound approx. 1 order of magnitude less at 200°C

# **Importance of Very Small Brine Volume**

- **Dust capillary response:** ~ 1µm
- **Capillary retention in** dust limits brine contact with metal surface



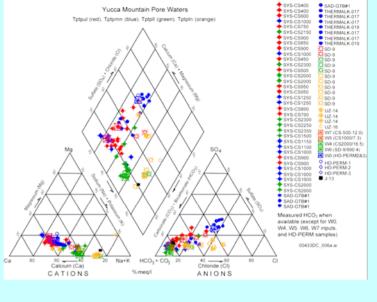



- Dust layer is unsaturated  $\Rightarrow$  rapid gas diffusion into/out of dust
- Scale limitations on development of compositional gradients (e.g.,  $O_2$ )

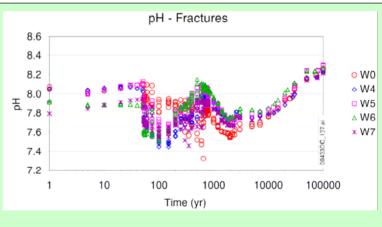
**Capillary hold-up** in dust layer



Department of Energy • Office of Civilian Radioactive Waste Management bryan NWTRB 9/25-26/06.ppt


# **Seepage Chemical Environment**




# **THC Seepage Model**

#### **Model Approach**

- Initial/boundary conditions selected from available porewater analyses
  - Approx. 100 porewaters analyzed
  - $NO_3^{-}/Cl^{-}$  ratios typically > 0.5
  - Group in 2-3 clusters based on chemical divides and statistics
- Thermal-hydrologic-chemical model
  - Repository center and edge conditions
  - Identify potential seepage waters, compositions
  - Validation using drift scale test results
- Abstracted output:
  - Compositions for potential seepage waters
  - $CO_2$  fugacity vs. time



PRELIMINARY INFORMATION FROM DTNs: GS030408312272.002. GS020408312272.003. GS020808312272.004. GS031008312272.008. and MO0005PORWATER.000.



PRELIMINARY INFORMATION FROM DTNs: LB0302DSCPTHCS.002, LB0307DSTTHCR2.002



www.ocrwm.doe.gov 14

### **Physical and Chemical Environment (P&CE) Model**

### Corrosion environment

- Evaporative equilibrium
- Salt separation effect

### Binning approach

- Bins based on chemical divides and other similar characteristics
- Statistical median water for each bin
- Create "bin history tables" by mapping bins to THC runs

### Preliminary results - 11 bins

- Lookup tables wrt T, P<sub>co2</sub>, RH
- Outputs NO<sub>3</sub><sup>-</sup>, Cl<sup>-</sup>, pH, ionic strength
- Uncertainty propagated



| nergy • Office of Civilian Radioactive Waste Manage | ment |
|-----------------------------------------------------|------|
|                                                     | ment |
| 5-26/06.ppt                                         |      |

| WO    |       | W4    |       | W5    |       |
|-------|-------|-------|-------|-------|-------|
| Time  | Crown | Time  | Crown | Time  | Crown |
| 10    | 4     | 10    | 10    | 10    | 7     |
| 51    | 5     | 51    | 11    | 51    | 11    |
| 53    | 5     | 53    | 11    | 53    | 11    |
| 55    | 6     | 55    | 11    | 55    | 11    |
| 60    | 6     | 60    | 11    | 60    | 11    |
| 75    | 5     | 75    | 11    | 75    | 11    |
| 100   | 5     | 100   | 11    | 100   | 11    |
| 150   | 4     | 150   | 11    | 150   | 11    |
| 200   | 4     | 200   | 11    | 200   | 11    |
| 250   | 3     | 250   | 11    | 250   | 11    |
| 300   | 3     | 300   | 11    | 300   | 11    |
| 350   | 3     | 350   | 11    | 350   | 11    |
| 400   | 3     | 400   | 11    | 400   | 11    |
| 500   | 4     | 500   | 5     | 500   | 9     |
| 600   | 4     | 600   | 5     | 600   | 11    |
| 650   | 5     | 650   | 11    | 650   | 11    |
| 700   | 11    | 700   | 11    | 700   | 11    |
| 751   | 11    | 751   | 11    | 751   | 11    |
| 790   | 11    | 801   | 11    | 785   | 11    |
| 801   | 11    | 804   | 11    | 801   | 11    |
| 1001  | 11    | 1001  | 11    | 1001  | 11    |
| 1201  | 11    | 1201  | 11    | 1201  | 11    |
| 1401  | 11    | 1401  | 11    | 1401  | 11    |
| 1601  | 11    | 1601  | 11    | 1601  | 11    |
| 1801  | 11    | 1801  | 5     | 1801  | 5     |
| 2001  | 4     | 2001  | 4     | 2001  | 4     |
| 2202  | 11    | 2202  | 11    | 2202  | 11    |
| 2402  | 11    | 2402  | 11    | 2392  | 11    |
| 3002  | 11    | 2597  | 11    | 2402  | 11    |
| 5003  | 11    | 3002  | 11    | 3002  | 11    |
| 7005  | 6     | 5003  | 11    | 5003  | 11    |
| 10007 | 6     | 7005  | 9     | 7005  | 9     |
| 12310 | 7     | 10007 | 7     | 10007 | 10    |
| 15010 | 7     | 12598 | 7     | 12304 | 7     |
| 20013 | 8     | 15010 | 8     | 15010 | 7     |
| 50035 | 8     | 20013 | 8     | 20013 | 8     |
|       |       | 50035 | 8     | 50035 | 8     |

Bin History Tables From P&CE Model (DTN: MO0312SPAPCESA.002)



# Summary: Seepage Environment

- Waste package temperature < 105°C
- RH varies from approx. 40% to 99+%
- Salt separation effect implemented for RH < 77%
- NO<sub>3</sub><sup>-</sup>/Cl<sup>-</sup> controlled by ambient water composition
- Ca-CI brines predicted during peak thermal period
- Wide range of pH (4.5 to 10.5 plus uncertainty)
  - Higher pH after cooldown (T<sub>dw</sub> < 100°C)
  - Increasing pH as repository cools
- Greatest potential for corrosive seepage chemistry occurs early during cooldown
- **Open system with respect to gases (background** acid gas concentrations low)





# **Summary: Deliquescence Environment**

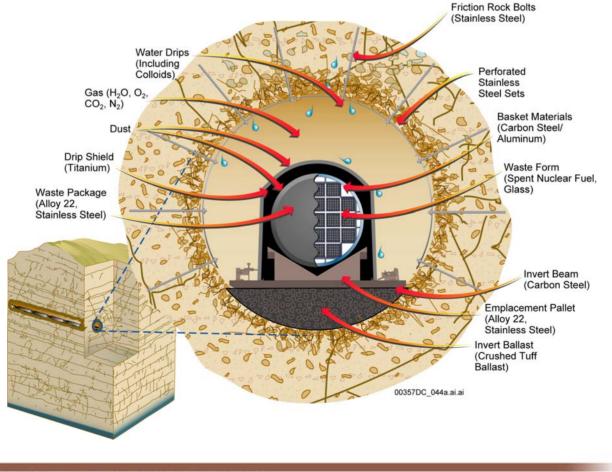
- Brines can form only in small amounts at elevated T
- **Physical environment** 
  - Unsaturated
    - Open system with respect to gases
  - Capillary and adsorptive retention in the dust layer further decreases available brine volume
- **Chemical environment** 
  - NaCl KNO<sub>3</sub> (- NaNO<sub>3</sub>) (- Ca(NO<sub>3</sub>)<sub>2</sub>) salt systems
    - Deliquescence at higher temp. requires multiple-salt assemblages
  - Nitrate-rich; NO<sub>3</sub><sup>-</sup>/Cl<sup>-</sup> increases with higher temperature
  - Acid degassing
    - May occur initially; less as pH increases; unlikely to dry out
    - Background acid-gas pressures are very low
    - $NO_3^{-1}/CI^{-1}$  minimum ratio is controlled by temperature
  - Reaction with silicates buffers pH, removes divalent cations





# **Evolution of Waste Package Environments** in a Repository at Yucca Mountain

### **Environment - Backup Slides**



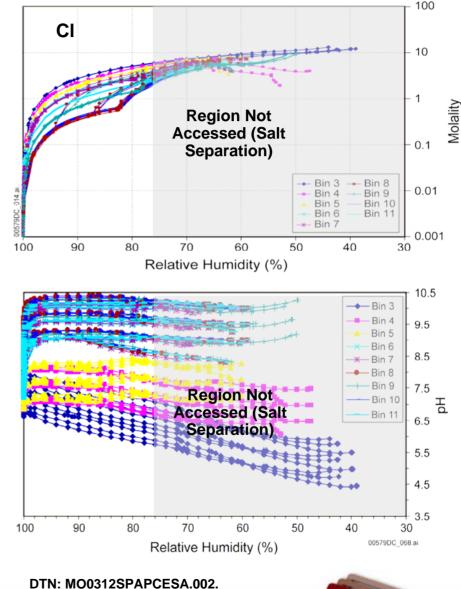



Department of Energy • Office of Civilian Radioactive Waste Management bryan\_NWTRB\_9/25-26/06.ppt

# **In-Drift Environment**

#### An aqueous environment can form on the surface of the waste package by deliquescence of salts found in dust, or by seepage






Department of Energy • Office of Civilian Radioactive Waste Management bryan\_NWTRB\_9/25-26/06.ppt

# **TSPA Implementation**

#### Evaporated Water Compositions for Input to the Localized Corrosion Model

- Interpolate Lookup Tables for pH, Ionic Strength, Cl<sup>-</sup>, and NO<sub>3</sub><sup>-</sup> (Fcns of T, RH, P<sub>co2</sub>)
- Salt Separation Effect
  - Halite precipitates if seepage contacts WP for RH < 77%</li>
  - Chloride separates from nitrate; localized corrosion initiates
- Apply Uncertainties
  - Model uncertainty
  - Statistical binning uncertainty





www.ocrwm.doe.gov