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Outline of Presentation

• Introduction
• Objectives of CNWRA Studies on In-Drift Water  

Chemistry
• Key Points
• Technical Approach
• Results
• Summary
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• Mode and rate of corrosion of engineered barriers will 
depend on water chemistry

• Chemistry of water will be altered by coupled thermal-
hydrological-chemical processes

Introduction

Brine

– Deliquescence of inorganic 
salts

– Evaporation of initially dilute 
seepage water
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• Environment I
– No seepage (due to 

elevated temperature)
– Brines from deliquescence 

of inorganic salts
– Potential corrosion at 

elevated temperatures

• Environment II
– Brines formed by 

evaporation of initially dilute 
seepage water
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Introduction (Cont’d.)

Calculated Waste Package Temperature and 
Relative Humidity for a Degraded Drift Scenario
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Objectives of CNWRA Studies 
on In-Drift Water Chemistry

• Determine the range in chemistry of waters that could 
contact the engineered barriers at Yucca Mountain

• Review the DOE technical bases for TSPA abstractions
• Abstract the results into the NRC Total-system 

Performance Assessment (TPA) code (O. Pensado, this 
workshop)

• Guide laboratory studies
– Corrosion of Alloy 22 in salt environments at elevated temperature 

(L. Yang, this workshop)
– Integrated tests on corrosion and evolution of near-field chemistry 

(D. Dunn et al., MRS 2006)
– Deliquescence of Yucca Mountain dust salts (M. Juckett, 

Goldschmidt 2006)
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Key Points

• Dust deliquescence appears unlikely to promote 
localized corrosion

– High proportion of localized corrosion inhibitors in dust 
samples from Yucca Mountain and vicinity

– Possible general corrosion and localized corrosion are being 
studied (uncertain at this time if inhibitors are effective at 
elevated temperatures)

– Additional characterization of dust salt chemistry is needed
• Evaporation of seepage waters could form brines that 

support localized corrosion of Alloy 22
– Further work is underway to update thermodynamic analyses
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Technical Approach

• Thermodynamic modeling
– Evaporation of initially dilute seepage waters (e.g., ranges 

in concentrations of corrosive species and corrosion 
inhibitors)

– Deliquescence behavior of salts and salt mixtures (effect 
of composition; time and temperature of brine formation)

• Modeling supported by deliquescence measurements   
(e.g., Yang et al., 2006)

• Sampling and characterization of dusts at Yucca 
Mountain

– Chemistry of potential deliquescent salts
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Thermodynamic Modeling

• Thermodynamic codes: Environmental Simulation 
Program (ESP) and StreamAnalyzer

– Steady-state process simulators for evaluating aqueous 
chemical processes in industrial and environmental 
applications (OLI Systems, Inc., Morris Plains, NJ)

– Large thermodynamic database

– Temperature and pressure limits: 300 °C, 1500 bar

– Concentration limit
• ~ 30 molal (standard electrolyte model)

• Pure (fused) salt (mixed-solvent electrolyte model)
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Thermodynamic Modeling of 
Seepage Water Evaporation

– Seepage water assumed 
similar to ambient YM 
porewaters

– Neglected interactions with 
natural and in-drift  
engineered materials
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• Chemistry data (+) on YM 
unsaturated zone porewaters
published by USGS (Yang et al., 
1996, 1998, 2003)

• Data on selected samples (●) 
used as input

• Supplemented by chemical divide approach
– Three brine types: calcium-chloride, neutral, and alkaline
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Thermodynamic Modeling of 
Evaporation — Results for 110 °C and 0.85 atm
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Ratio of Σ(inhibitors*) to Cl-
*(NO3,SO4,HCO3,CO3)
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• Some brines have high Cl–
and F– concentration

Note: Low ratio of Σ(inhibitors) to Cl– is partly 
due to formation of CaNO3

+ and NaNO3 
aqueous complexes, which have uncertain 
thermodynamic data
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Thermodynamic Modeling of Seepage
Water Evaporation — Results (Cont’d.)

• Chemistry information abstracted into NRC TPA code          
(O. Pensado, this workshop)

• Most have high ratio of corrosion 
inhibitors (NO3

–, SO4
2–, HCO3

–, 
CO3

2–) to corrosive Cl–



12

• Deliquescence relative humidity (DRH) is a function 
of salt composition and temperature

• Limited data at elevated temperatures (>80 °C)
• Deliquescence relative humidity, DRH, is given by

DRH = pH2Osat/pH2Oo 

where pH2Osat is the vapor pressure of a saturated salt solution 
and pH2Oo is the vapor pressure of pure water

• pH2Osat and pH2Oo calculated using Environmental 
Simulation Program or StreamAnalyzer (mixed-
solvent electrolyte model)

Thermodynamic Modeling of 
Deliquescence Behavior of Salts
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Thermodynamic Modeling of 
Deliquescence Behavior of Salts (Cont’d.)

• Results for salts in the 
Na-K-Cl-NO3 system

– Likely dominant 
composition in YM in-
drift environment

– Significant decreasing 
trend of DRH with 
temperature

– Very low DRH possible 
(thus, brine formation at 
early times and high 
temperatures)
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• Literature data on chemistry 
of dusts collected in the 
vicinity of Yucca Mountain 
(Reheis, 2003)

– Dominant anions are chloride, 
nitrate, and sulfate

– Significant concentrations of 
oxyanions (NO3

–, SO4
2–) that 

potentially can mitigate 
localized corrosion of Alloy 22

– Highly variable (NO3+SO4)/Cl 
mole ratio, but mostly greater 
than 0.1.
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Characterization of Dust from 
Yucca Mountain and Vicinity (Cont’d.)

• Samples collected by the CNWRA from 
the Exploratory Studies Facility 
(underground tunnel) and at the Yucca 
Mountain surface

• Samples provided by U.S. Geological 
Survey (Z. Peterman)

• Samples were characterized
– Ion chromatography
– ICP-MS
– Scanning electron microscopy
– Energy dispersive X-ray spectrometry
– X-ray diffraction analysis

Dust sample collectors setup (a) outside 
and (b) inside the Exploratory Studies 
Facility at Yucca Mountain

(a)

(b)
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Characterization of Dust from
Yucca Mountain and Vicinity (Cont’d.)

Analysis
Surface 
Sample 
(mg/kg)

Tunnel 
Sample 
(mg/kg)

Calcium 56.5

17.8

31.2

8.84

42.9

Sulfate 19.6 1920

Nitrate 1.69 218

Chloride 8.59 2350

(NO3+SO4)/Cl 
Ratio

0.95 0.23

Soluble 
Fraction (wt%)

<0.1% 0.69%

918

Sodium 686

Potassium 205

Magnesium 101

Silicon 21.9

• Results of soluble fraction analyses
– Very low fraction of soluble salts 

(<1% of total sample) 
– (NO3+SO4)/Cl greater than 0.1
– Localized corrosion of Alloy 22 

could be mitigated in the 
presence of sufficient nitrate 
and sulfate
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Characterization of Dust from
Yucca Mountain and Vicinity (Cont’d.)

• Dusts are mostly insoluble 
minerals
– Feldspars (e.g., anorthite, albite, 

microcline, anorthoclase)
– Silica (quartz, cristobalite)

• Likelihood for brine to contact 
the waste package would be 
reduced due to the small 
volume of brine mixed with 
rock dusts

X-ray diffraction pattern of dust 
sample taken from inside the 
Exploratory Studies Facility

• CNWRA experiments are ongoing to evaluate corrosion 
by small amount of salts mixed with rock dusts
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• Chemistry of water that could contact engineered 
barriers at the potential YM repository was evaluated
– Evaporation of initially dilute seepage waters
– Deliquescence of inorganic salts

• Evaporation of seepage waters could form brines that 
support localized corrosion of the Alloy 22 waste 
package material
– Ranges in brine chemistry were proposed to support NRC total 

system performance assessments.
– Thermodynamic analyses will be updated based on results of 

CNWRA coupled thermal-hydrological-chemical simulations
– Effect of drift degradation on water chemistry will be evaluated

Summary
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• Some salt mixtures can deliquesce at elevated 
temperatures and form brines
– CNWRA experiments to evaluate potential corrosion at high 

temperatures by Na-K-Cl-NO3 salts are ongoing

• There is limited chemistry data on dust samples from 
the Yucca Mountain surface and tunnels
– Soluble salts have significant concentrations of corrosion 

inhibitors nitrate and sulfate
– Proposed NRC performance assessment model assumes no 

localized corrosion due to salt deliquescence
– Further sampling and characterization of Yucca Mountain 

dust samples are planned
– Experiments are underway to evaluate potential corrosion by 

small volumes of brines mixed with rock dusts

Summary (Cont’d.)
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