

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Presented to: Nuclear Waste Technical Review Board

Presented by: Patrick V. Brady Senior Scientist, Sandia National Laboratories

May 15, 2007 Arlington, Virginia

Outline

- Information flow from near-field chemistry model
- Near-field chemistry
- Hydrologic boundary conditions
- Field feldspar dissolution rate
- Median thermal path water-rock interaction parameter (WRIP) predictions
- Predicted rock alteration
- In-drift CO₂ levels
- Validation
- Summary

Information Flow from Near-Field Chemistry Model

LL_YMBrady_NWTRB_051507.ppt

Predecisional—Preliminary

Near-Field Chemistry

Charles R. Bryan and Katheryn B. Helean; Sandia National Laboratories

LL_YMBrady_NWTRB_051507.ppt

Predecisional—Preliminary

Hydrologic Boundary Conditions

Department of Energy • Office of Civilian Radioactive Waste Management

Predecisional—Preliminary

LL_YMBrady_NWTRB_051507.ppt

Drifts chosen for analysis

Field Feldspar Dissolution Rate

	smectite-illite		sorptive zeolite		feldspar	
UNIT	ave	std dev.	ave	std dev.	ave	std dev.
Tptpul	2.5	1.37	0.06	0.14	61.38	7.87
Tptpmn	2.03	0.62	0.01	0.02	62.35	3.61
Tptpll	2.48	2.13	0.23	0.28	59.36	6.76
TptpIn	1.13	1.07	0.59	0.6	61.87	4.09

Ambient

= 0.076 mol feldspar/kg (assumes Al conserved) 12.8 Ma

= 5.94 x 10⁻⁹ mol kg⁻¹ yr⁻¹ Maximum, at 23°C

Median Thermal Path WRIP Predictions

Department of Energy • Office of Civilian Radioactive Waste Management

LL_YMBrady_NWTRB_051507.ppt

Predecisional—Preliminary

www.ocrwm.doe.gov

Predicted Rock Alteration

 $Na_{0.51}K_{0.46}Ca_{0.03}AI_{1.03}Si_{2.97}O_8 \rightarrow$ Smectite/Zeolite/Illite/Sep.

Assume equilibrium with calcite (0.01-0.41% in TSw), silica.

A. NaKAl₂Si₆O₁₆ + SiO_{2,aq} + Ca⁺⁺ + 7H₂O \rightarrow CaAl₂Si₇O₁₈•7H₂O + Na⁺ + K⁺

B. NaKAl₂Si₆O₁₆ + SiO_{2,aq} + CaCO₃ + CO₂ + 8H₂O \rightarrow CaAl₂Si₇O₁₈•7H₂O + Na⁺ + K⁺ + 2HCO₃⁻

C. $3NaKAl_2Si_6O_{16} + 4SiO_2 + 2CaCO_3 + 2Mg^{++}$ + $16H_2O \rightarrow 2KMgAlSi_4O_{10}(OH)_2 +$ $2CaAl_2Si_7O_{18} \cdot 7H_2O + K^+ + 3Na^+ + 2CO_2$

(Use EQ3/6)

Predecisional—Preliminary

LL_YMBrady_NWTRB_051507.ppt

www.ocrwm.doe.gov

Increasing alteration

In-drift CO₂ Levels

Maximum

Equilibrium CO_2 : CO_2 addition from calcite/smectite/zeolite growth, CO_2 loss from calcite/silicate dissolution

Minimum

Ambient CO₂ levels displaced by water vapor, plus CO₂ from evaporated seepage

Department of Energy • Office of Civilian Radioactive Waste Management

Predecisional—Preliminary

LL_YMBrady_NWTRB_051507.ppt

www.ocrwm.doe.gov

LL_YMBrady_NWTRB_051507.ppt

Validation

$\delta^{87} \text{Sr}$ Calculated TSw Feldspar Dissolution Rate

-0)

Department of Energy • Office of Civilian Radioactive Waste Management

Predecisional—Preliminary

www.ocrwm.doe.gov

Summary

- Near-field chemistry model inputs = thermal field, percolation fluxes
- Near-field chemistry model outputs = seepage chemistries
- Near-field chemistry model validation = δ^{87} Sr, PTn waters, Drift-Scale Test

