

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Presented to: Nuclear Waste Technical Review Board

Presented by: Paul W. Reimus Senior Scientist, Los Alamos National Laboratory

May 15, 2007 Arlington, Virginia

Predecisional—**Preliminary**

Outline

- New Nye County Early Warning Drilling Program (EWDP) wells (Phase V)
- Hydrostratigraphic framework model (HFM) update
- Summary of hydraulic and tracer test results at Nye County Site 22
- Innovative methods of identifying flowing intervals and measuring ambient flow velocities in Nye County wells

All of these activities have benefited from or been a result of close cooperation between the DOE-funded Nye County Department of Natural Resources EWDP, the DOE-University of Nevada Cooperative Agreement, and Yucca Mountain Project (YMP) scientists

New Nye County Wells

Department of Energy • Office of Civilian Radioactive Waste Management LL_YMReimus_NWTRB_051507.ppt

Predecisional—Preliminary

HFM Comparisons at Water Table

Differences mainly attributable to

Nye County EWDP Wells (updates south and west of Busted Butte)

2002 and 2004 USGS Regional Models (boundaries, other changes)

Testing at Nye County Site 22

Objective

 Test/validate conceptual models of flow and radionuclide transport in the alluvium south of Yucca Mountain

Obtain estimates of

- Hydraulic conductivity
- Groundwater velocity and flow direction
- Effective porosity
- Diffusive mass-transfer parameters
- Reactive transport properties
- Colloid transport parameters

Site Layout

Department of Energy • Office of Civilian Radioactive Waste Management

LL_YMReimus_NWTRB_051507.ppt

Site 22 Hydraulic Test Interpretations

- Analyzed observation well drawdowns/recoveries in pumped zone and in zones above and below pumped zone
- Three-aquifer semi-analytical solution:

$$s_1 p \widetilde{S}_1 = T_1 \nabla \widetilde{S}_1 + \chi_{1-2} (\widetilde{S}_2 - \widetilde{S}_1) - \chi_0 \widetilde{S}_1$$

$$s_2 p \widetilde{S}_2 = T_2 \nabla \widetilde{S}_2 + \chi_{1-2} (\widetilde{S}_1 - \widetilde{S}_2) + \chi_{2-3} (\widetilde{S}_3 - \widetilde{S}_2)$$

 $s_3 p \widetilde{S}_3 = T_3 \nabla \widetilde{S}_3 + \chi_{2-3} (\widetilde{S}_2 - \widetilde{S}_3)$

 Obtain estimates of storativity (s) and transmissivity (T) in all three "aquifers", and χ (vertical hydraulic parameter) in intervening layers use two-aquifer solution for top and bottom zones

Department of Energy • Office of Civilian Radioactive Waste Management

Alluvium Flow Conceptualization and Parameters from Hydraulic Tests

22S Single-Well Tracer Tests—Dual-Porosity Behavior with Short Diffusion Distances

3-Day Recovery: ~100% 30-Day Recovery: 96.5%

- Single set of diffusion parameters used to fit both tracer test responses
- Dual-porosity behavior observed, but system should exhibit single porosity behavior over longer time and length scales

Single-Well Tracer Tests Yield Estimates of Alluvium Specific Discharge at Site 22

• Specific discharge estimated from tracer responses as function of drift period

- From difference in peak arrival times—0.5 to 1.2 m/yr
- From difference in high-recovery times—2.2 to 5.4 m/yr
- Range from single-well tests in 19D (at 18-km boundary) —1.2 to 9.4 m/yr
- Other specific discharge estimates
 - Independently estimated from head/conductivity data—3 to 12 m/yr
 - From calibrated SZ site-scale flow model— ~21 m/yr

Cross-Hole Tracer Test 1 Results

Cross-Hole Test 1—Dual Porosity, Multiple Pathway Interpretations

LL YMReimus NWTRB 051507.ppt

- Both interpretations involve 3 flow pathways with dual-porosity behavior in at least 2 of the pathways
- Evidence for multiple flow pathways apparent from derivative of bromide and TFBA responses

Predecisional—Preliminary

Cross-Hole Test 2 Tracer Responses

Transport Parameter Estimates from Site 22 Tracer Tests

	Lower	Best	Upper
Parameter	Bound	Estimate	Bound
Effective flow porosity	0.036	0.121	0.187
Specific discharge, m/yr*	0.5	—	5.4
Longitudinal dispersivity, m	1.6	5	10
Horizontal flow anisotropy ratio (N-S principal axis)	2.5	3.1	10.7
Characteristic diffusion time scale, (L ² /8D _m), hr	0 (14.1)	_	1125
Ratio of stagnant to flowing water volumes	0 (0.3)	_	1.9
Microsphere filtration rate constant, hr ⁻¹	0.04	_	0.16
Microsphere detachment rate constant, hr ⁻¹	0.00034	_	0.0011

*Estimate of ~2 m/yr and southerly direction from cross-hole Test 1 tracer responses at start of Test 2

SZ flow/transport models

- Effective flow porosity—Normal distribution with mean = 0.18
- Horizontal anisotropy—Zone of enhanced permeability along Fortymile Wash
- Conceptual model—Alluvium as porous medium (single-porosity)

Outline Revisited

- New Nye County Early Warning Drilling Program (EWDP) wells (Phase V)
- Hydrostratigraphic framework model update
- Summary of hydraulic and tracer test results at Nye County Site 22
- Innovative methods of identifying flowing intervals and measuring ambient flow velocities in Nye County wells

Flowing Electrical Conductivity (FEC) Logging

- 1. Set pump above and injection tube below interval to be tested
- 2. Recirculate fluid
- 3. Log wellbore under ambient or pumped conditions

DOE OSTI/S&T and Nye County EWDP Collaboration

Department of Energy • Office of Civilian Radioactive Waste Management

Predecisional—Preliminary

FEC Logs in 24PB Indicate High-Flow Zone at ~230 m below Surface in Bullfrog Tuff

LL YMReimus NWTRB 051507.ppt

Predecisional—Preliminary

High-Flow Zone in 24PB Confirmed by Thermal Logging in Grouted-In Borehole

Heating Profiles in 22PB

LL_YMReimus_NWTRB_051507.ppt

Summary and Conclusions

- HFM updates based on (1) Nye County wells and (2) 2006 regional flow model result in greater predicted radionuclide transport through alluvium
- Site 22 hydraulic tests
 - Weak vertical anisotropy shallow (2:1); stronger vertical anisotropy deep (>10:1)
 - 10:1 used in SZ site-scale flow model
 - Composite K_h = 5 to 10 m/d versus 17 m/d in SZ sitescale flow model

Summary and Conclusions (continued)

• Site 22 tracer tests

- Dual-porosity system with short diffusion scales versus single-porosity system in SZ site-scale transport model
- Effective flow porosity estimate = 0.12 versus 0.18 (mean) in SZ site-scale transport model
- Specific discharge estimates = 0.5 to 5.4 m/yr (southerly direction) versus ~21 m/yr in SZ site-scale flow model
- FEC and DTPS logging results indicate high flow zone in Bullfrog Tuff at Site 24

Key to Map Legend

Legend

28	YAA	- Young Alluvial Aquifer
27	YACU	- Young Alluvial Confining Unit
26	0AA	- Older Alluvial Aquifer
25	OACU	- Older Alluvial Confining Unit
24		- Limestone Aquifer
23		- Lava flow Unit
22		- Young Volcanic Units
21		- Volcanic and Sodimontary Units
วิถ่		- Timbor Mountain Volcanic Aquifor
10		- Deinthruch Veleonie Aquifer
18		- Calico Hills Volcanic Aquiler
17		- Wahmania Valaania Unit
16		- Crotor Elet - Brow Booo Aquifor
15		= Crater Flat – Flow Fass Aquiler
14	CETA	= Crater Flat – Builfrog Confining Unit
13		= Crater Flat – Tram Aquiter
12		= Beited Range Unit
11	VSLLower	= Older Volcanic Units
10		= Volcanic and Sedimentary Units
10		= Sedimentary Confining Unit
9		= Lower Carbonate Aquiter Thrust
9		= Lower Clastic Contining Unit Thrust
6		= Upper Carbonate Aquiter
p		= Upper Clastic Confining Unit
S		= Lower Carbonate Aquifer
4		= Lower Clastic Confining Unit
న		= Crystalline Confining Unit
2		= Intrusive Confining Unit

Department of Energy • Office of Civilian Radioactive Waste Management

Predecisional—Preliminary