

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Equipment and Facility Testing Program

Presented to: U.S. Nuclear Waste Technical Review Board

Presented by: David S. Rhodes Engineering Support Supervisor, Office of the Chief Engineer

September 24, 2008 Las Vegas, Nevada

Equipment and Facility Testing Program

Content

- Prototype/factory tests
- Preoperational test program
- Startup test program

Purpose of Testing Program

- Ensure components and equipment can be operated safely and dependably and will not adversely affect health and safety
 - Have been properly constructed and installed
 - Fulfill their operational and safety functions in accordance with their respective design basis requirements, including a hot test to confirm radiation levels and associated exposure times involving actual radiological sources
 - Meet regulatory and licensing requirements and are capable of complying with applicable license specifications

Prototype/Factory Tests

- Prototyping
 - Program defined, directed, and controlled by OCRWM
 - Conducted by program contractor (INL for waste package closure system)
 - Audited or observed through QA Program
 - **Results evaluated by OCRWM**
- Prototyping waste package closure system
 - Full-size waste package top and closure system
 - **Two-machine concurrent welding**
 - **Demonstration of analyzed performance needs**
 - Schedule in-progress now and will complete before equipment performance specification development

- Waste package closure prototyping
 - Results are within the expectations
 - Should define acceptable process to meet closure performance requirements
 - Demonstrate non-destructive examination techniques
 - Demonstrate stress-mitigation techniques
 - Largest gain in throughput resulted from middle lid elimination (iterative design/analysis process)
 - Realized reduction in weld times
 - More reductions expected as processes validated

- Waste package, waste package emplacement pallets and drip shields prototyping
 - To confirm manufacturability
 - To measure relationship between defects and residual stresses
 - To fine-tune non-destructive examination testing procedures
 - Schedule -
 - These prototyping activities are deferred until work prioritization dictates their start
 - Complete before procurement of components
- Dual-Purpose Canister (DPC) cutting machine prototyping
 - To demonstrate functionality and demonstrate ability to remotely perform the steps
 - Schedule –flexible schedule before procurement.

Factory Tests

- Engineering products define structures, systems, and components' performance
- Specifications identify needed factory tests
 - Pulled from codes and standards
 - Pulled from design performance specifications
- Contractor deliverables provide factory test results
 - Reviewed for acceptance
 - Allows baselining operating speeds
- OCRWM audits or observes selected factory tests
 - Quality Assurance, Engineering, or both organizations audit or observe tests per NQA Program

- Factory Tests
 - Schedule
 - Starts based on receipt schedules for procurement activities
 - Completes before equipment delivery to OCRWM
 - Will not be specified until detailed construction or procurement design is completed
 - Opportunity to refine throughput studies / capabilities
 - Such as for Transportation, Aging, and Disposal canister closure and DPC cutting
 - Factory testing will augment component, pre-operational testing

Preoperational Test Program

- Program parts
 - Starts with installation inspections
 - Continues through
 - Turnover for testing
 - Initial preparation and conduct of component functional tests
 - Component testing of performance
- Dry-run of equipment with mockup waste containers

Preoperational Test Program (cont.)

- Schedule will be defined in a Testing Program Plan
 - Initial Handling Facility (IHF) starts first
 - Canister Receipt and Closure Facility (CRCF)-1 starts after IHF testing
 - Wet Handling Facility (WHF) after CRCF-1 testing
 - High-level project schedule in License Application Figure 2-1
- Details will not be specified until detailed construction or procurement design is completed
- Plan includes using IHF for operator training
 - Available year before operations

Startup Test Program

- **Startup program parts**
 - Picks up from preoperational tests
 - System performance tests
 - Integrated system testing
 - Cold testing include dry-run of each waste stream
 - Operational readiness review bridges the cold and hot testing
 - Hot testing (is initial startup operations) after the Receive and Possess License is issued
 - Schedule will be defined in a Testing Program Plan
 - **IHF** testing is first ٠
 - **CRCF-1** follows IHF ٠
 - WHF follows CRCF-1 ٠
 - High-level project schedule in License Application Figure 2-1 ٠

Startup Test Program (cont.)

- Details will not be specified until detailed construction or procurement design is completed
- Transition from startup testing through authorization to operate
 - Timing and coordination are NRC License dependent
- Testing program will be based on startup and operating experiences from:
 - Other NRC-licensed facilities (through NRC Inspection Manual and the Institute for Nuclear Power Operations (INPO) programs)
 - DOE-operated, similar facilities, including the Waste \blacklozenge Isolation Pilot Project (DOE startup programs)

Confidence in Results

- Waste package closure prototyping is developing adequate processes and defining safe methods
- Waste package, waste package emplacement pallet, and drip shield prototyping will prove fabrication, but does not have relationship with throughput inputs
- Each step in prototyping and factory testing builds confidence in design adequacy
- Preoperational and startup testing results will confirm design execution in construction and procurement
- Current prototyping results support what is modeled in throughput studies

