

Issues Related to Longterm Dry Storage of Used Nuclear Fuel

Nuclear Waste Technical Review Board Meeting

Las Vegas NV, 11 June 2009

John Kessler Manager, Used Fuel and HLW Management Program

Outline

- Dry cask storage system functions
- Dry Cask Storage Characterization Project (DCSC) review
- Potential long-term degradation mechanisms
- EPRI plans for future work

Functions of a Dry Cask Storage System that Must be Maintained

- NUREG-1536 (NRC, 1997) identifies the functions important to safety that the dry cask systems must maintain:
 - thermal performance
 - radiological protection
 - confinement
 - sub-criticality
 - retrievability

Dry Cask Storage Characterization (DCSC) Project Review

- Four-year effort (1999-2002)
- Impetus: end of the initial 20-year licenses (2006)
- Investigation of Castor V/21 cask at INL
 - In dry storage for 15 years
 - Represented the lead (spent) fuel in dry storage in the U.S.
- Co-funded by NRC-Research, EPRI, DOE-RW, DOE-EM
- Documented in EPRI reports:
 - Interim report 1000157 (2000)
 - Interim report 1003010 (2001)
 - Final report 1002882 (2002)

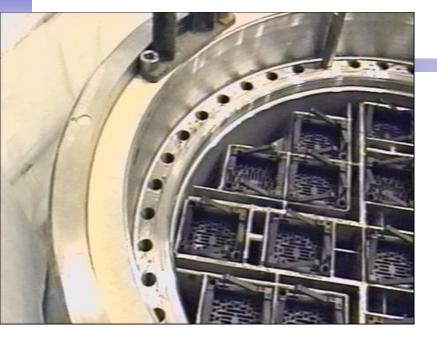
DCSC Project Tasks

Reopen Castor V/21 at INL

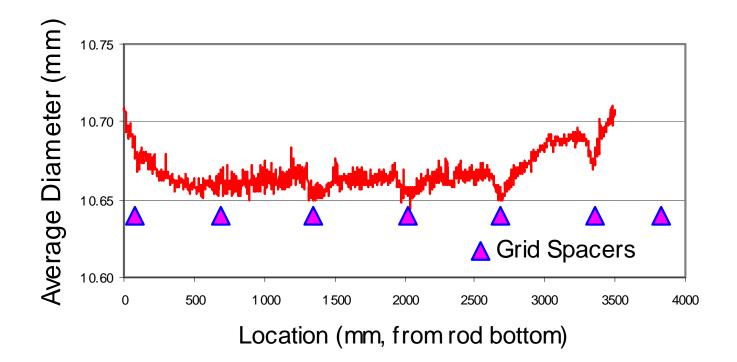
- Cask cavity gas analysis
- External dose rate measurements
- Visual inspection of assemblies and cask internals
- Remove rods from assembly in Castor at INL

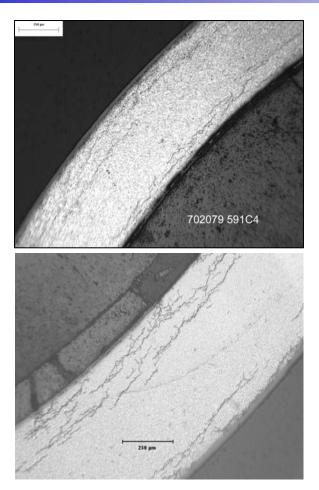
Rod testing at ANL

- Profilometry at ANL-West
- Rod puncturing for fission gas release at ANL-West
- Destructive exams of Zircaloy at ANL-East



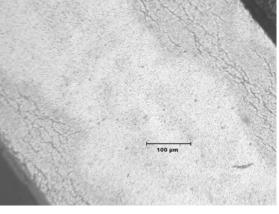
Castor V/21 on Transporter Headed to Hot Shop





DCSC Profilometry: No Evidence of Creep During Storage

The nominal as-fabricated cladding outer diameter is 10.72 mm.



DCSC: Morphology of Hydrides Mostly Circumferential

Mid plane

0.5m above mid plane

Main Conclusions from the Four-Year DCSC Effort

- No cask functional degradation observed
- Assemblies still look the same
 - No sticking; no significant bowing upon removal
 - No visual signs of degradation (color, oxide, damage)
- No leaks during storage
- No significant additional fission gas release to rod internals
- No significant hydride reorientation
- Zero to minuscule creep during storage
- "Creep life" remains
- Result: basis for license extensions out to ~60 years
- Most severe conditions are during first 20 years

Examples of Issues the DSCS Program did not Address

- High burnup used fuel
- Long-term concrete degradation
- Effect of marine environments (examined in EPRI report 1011820, September 2005)

Review of Potential Degradation Mechanisms – Outline (from EPRI report 1003416, December 2002)

Mechanism	Fuel		Cladding	
	Initial	Extended	Initial	Extended
Normal				
Oxidation	Ν	Ν		
fgr	Y	N		
Creep,			Y	N
DCCG			Ν	N
H ₂ reorientation			Y	N
DHC			Ν	N
SCC			maybe	N
H ₂ embrittlement			Ν	Y
H ₂ migration			Y	N
Annealing			Y	N
Crud Spallation			maybe	N
Off-Normal				
Oxidation due to air	Y	Y	Y	Y
ingress				
Creep			Y	DE
Annealing			Y	DE
Accident-impact				
Fracture	DE	DE		
Oxidation	DE	DE		
Impact Breach			DE	DE
Crud spallation			DE	DE
Accident-fire				\frown
Stress rupture			Y	Y
Annealing			Y	Y
H ₂ reorientation			Y	Y
DHC = Delayed Hydroge	n Cracking			
DCCG = Diffusion Contr	olled Cavitation	Growth		

SCC = Stress Corrosion Cracking© 2009 Electric Power Research Institute, Inc. All rights reserved. DE = Depends on the event EPEI ELECTRIC POWER RESEARCH INSTITUTE

Temperature-related Dry Storage System Degradation Mechanisms

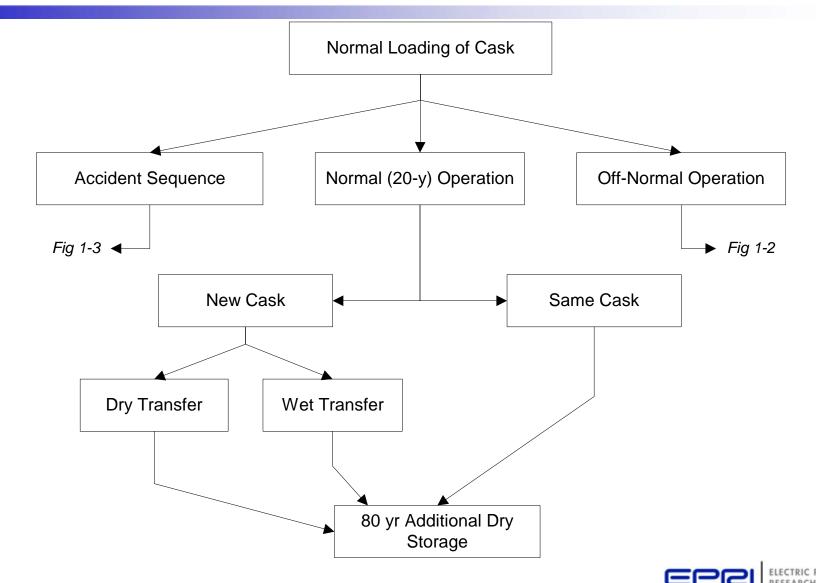
- Fuel cladding creep caused by increased cladding ductility and increased stress
 - Due to higher temperatures causing higher pressures inside the cladding
- Hydride reorientation in the spent fuel cladding
- Corrosion
- Degradation of neutron shielding
- Concrete dry-out and cracking

Changes as the System gets Cooler

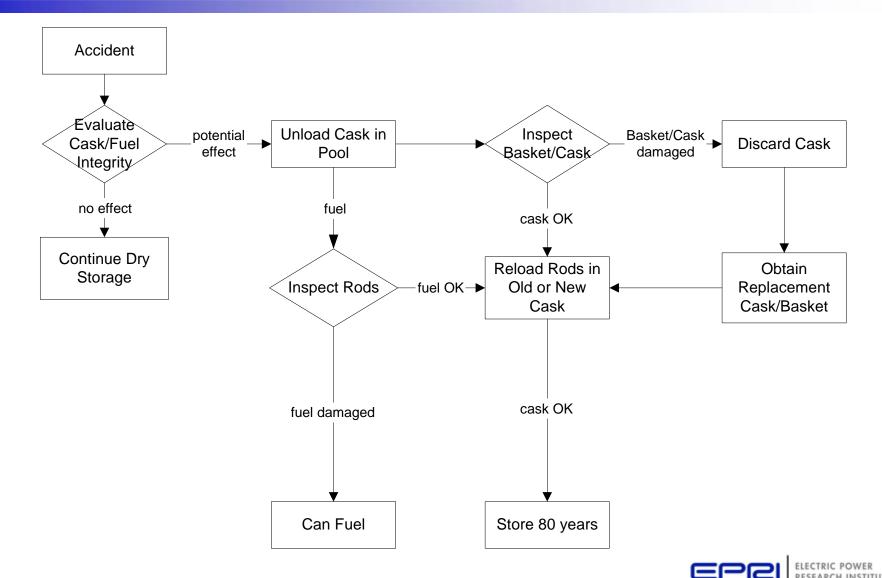
- Mostly good things
 - Reduced metal creep rates
 - Reduced corrosion rates
 - Reduced gamma and neutron radiation
- Potential negatives (mostly related to cladding)
 - Additional hydride precipitation
 - Decreased ductility
 - *Potentially* more susceptible to breakage during storage and transportation

Reduced Degradation with Time does not Mean Degradation Stops

- Corrosion (in oxidizing environments)
- Helium buildup inside fuel rods


Aging Management Options

- "Initial" activities
 - Additional analyses to extend progress of degradation mechanisms
 - Enhanced monitoring and inspection
- "Eventually"
 - Canning
 - Repackaging
 - Over-packaging


• When is "eventually"?

Potential Sequence of Events for Extended Dry Storage (from EPRI report TR-108757, 1998, assumes 100-yr storage)

Potential Sequence of Events for Extended Dry Storage After an Accident Event

Potential EPRI Work on Very Long-term Used Fuel Storage and Transportation Issues

- Workshop (Fall 2009)
- "Paper" analyses
- Experimental (with others?)
- Licensing issues
- Operational issues

Together...Shaping the Future of Electricity

