Closing the Nuclear Fuel Cycle Implications for Nuclear Waste Management and Disposal

September 23 2009

The Energy Solutions Team Perspective

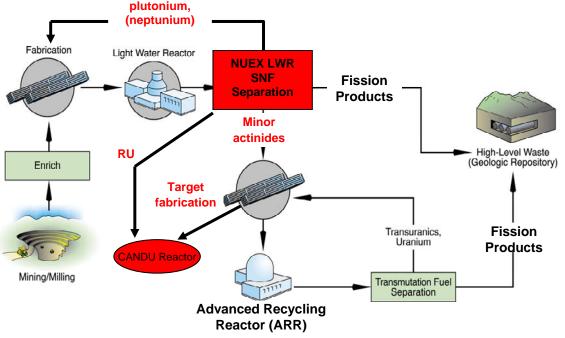
Introducing the team

Why close the fuel cycle?

- Solves the nuclear waste disposal problem
 - Reduces amount, toxicity and heat of high level waste
 - Opens alternative repository options
 - Reduces need for multiple HLW repositories
 - Will lower future HLW disposal costs
- Provides additional waste confidence for nuclear new build to proceed
- Improves the security of US energy supplies
 - Recovers and recycles valuable nuclear materials

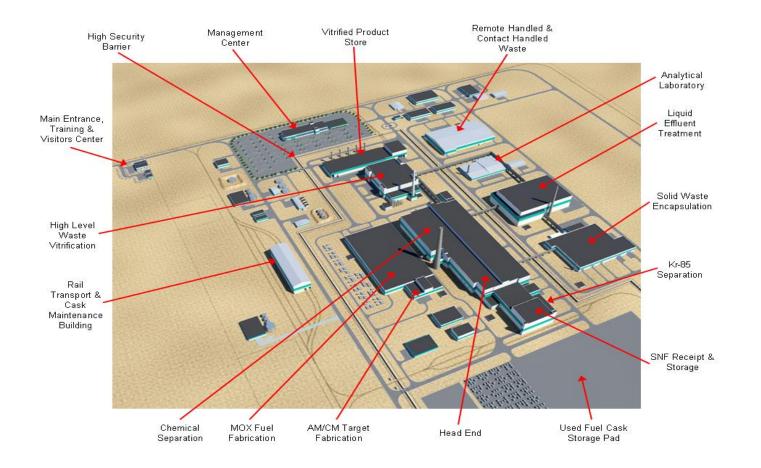
Our Approach

- Incremental approach to deployment of fuel cycle facilities
 - Near-term development of Generation III+ Commercial LWR fuel recycling
 – Industry and National Labs collaborate on focused development of a US design
 - Medium-term development of Generation IV Advanced Recycle Reactors and advanced fuel recycling - National Labs lead, Industry supports
 - Longer-term commercial deployment of Advanced Recycle Reactors
- Action needed now to be able to close the fuel cycle in the future
 - Develop legislative, regulatory and financial enablers
 - Establish New Government Entity to manage back-end fuel cycle
 - Undertake activities to support licensing requirements
 - Industry & National Labs work together on focused development needs
 - Select Site(s) for interim storage and fuel cycle facilities, based on volunteer states and communities
 - Study alternative nuclear waste repository options

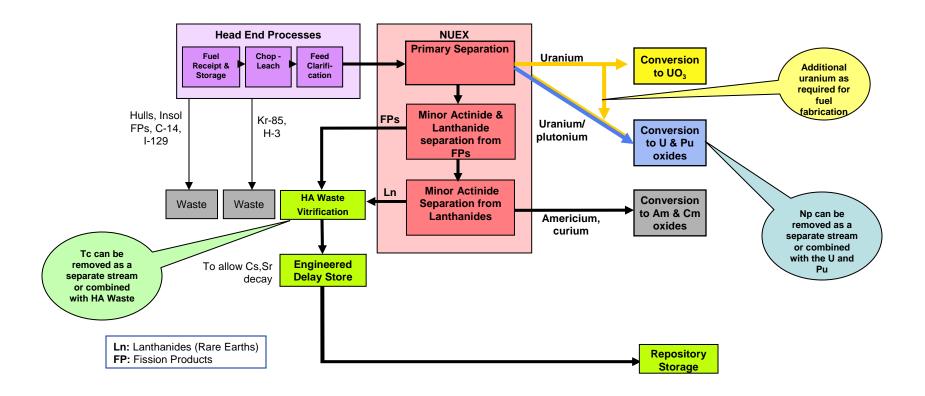

Our Approach

- Use advanced, yet proven, processes and equipment for LWR recycling and product re-use (incorporate lessons learned from existing baseline processes)
 - Energy Solutions NUEX recycling process, 1,500 metric ton (MT) per year throughput facility, MOX fuel in existing LWRs, recycled uranium (RU) in existing CANDU reactors
 - Option for separation of Am/Cm for burning/transmutation in CANDU or LWR reactors
 - Mitigates technical and commercial risk by advancements to proven processes and equipment
 - Allows progress on used fuel disposition while awaiting transformational technologies

Our Approach


- Ability to re-use RU in CANDU reactors or existing/new build LWRs
- Ability to re-use U/Pu as MOX fuel in existing or new-build LWRs
- Ability, if required, to burn Am/Cm (as targets) in existing thermal (CANDU or LWR) reactors
- This approach "fills the gap" before Advanced Recycle Reactors enter commercial operation
 Uranium, nuternium

Our Facility

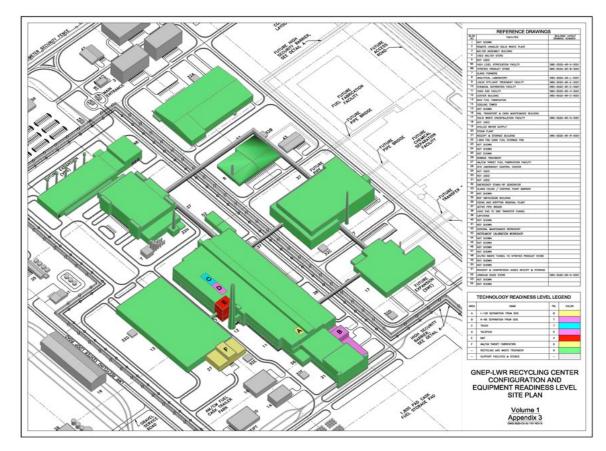

• Light Water Reactor Recycling Center situated on a 330 acre site

Our Separations Technology

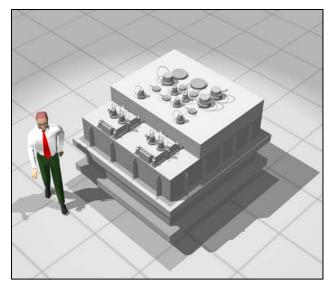
- NUEX Flowsheet is designed specifically for advanced US recycling major changes from current baseline flowsheet
- Equipment based on proven design, minimizes technical risk

- Recycling reduces the HLW volume for disposal by 75%
- Recycling produces GTCC waste that is about 35% of the original used fuel volume
- Recycling produces low level solid waste
- Recycling using the NUEX flowsheet predicted to result in
 - zero radioactive liquid discharges
 - near-zero aerial discharge

US NUEX recycling facility expected to have significant advancements in waste management compared to Sellafield, La Hague and Rokkasho

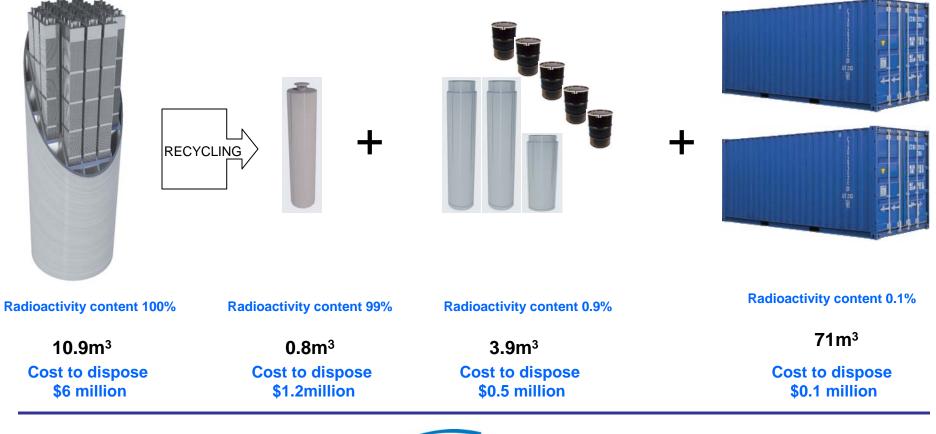


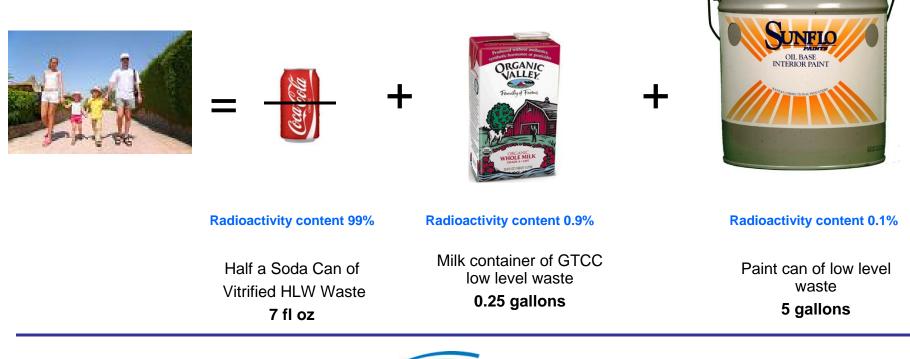
- Advances in Waste Management
 - High level waste incorporation rates into Glass reduces HLW volumes
 - Cs, Sr and Tc along with all other FPs incorporated into glass by advanced joule ceramic melters
 - Gaseous effluent treatment/capture (Kr, I, C-14) with goal of near-zero aerial discharge facility
 - Kr captured using cryogenic distillation, decay stored prior to discharge
 - I captured on silver mordenite media and disposed as solid waste
 - C-14 captured in barium carbonate and disposed as solid waste
 - Tritium treatment/Solidification of Liquid Effluents resulting in zero liquid discharge facility
 - Tritium in liquid effluents encapsulated in cement based matrix
 - Volume reduction of all Low level waste (GTCC and Class A/B/C)
 - Supercompaction


Our Advancement Approach

• Advancements in NUEX Flowsheet and Waste Management do not significantly affect size and complexity of facility

- Liquid Effluent
 - Baseline commercial design is already a near z ero liquid discharge facility
 - Improvements identified through:
 - Evaporation
 - Ion Exchange systems
 - Liquid waste stream recycling for reagent make-up excess (including tritiated water) is encapsulated
 - All liquid wastes discharged will be compliant with federal and local regulatory requirements
- Aerial effluent
 - Includes technologies for I-129, C-14 and K-85 removal
- Solid waste
 - High level waste
 - Liquid waste evaporated prior to vitrification
 - Removal of Am/Cm from HA wastes to minimize long term heat load and radiotoxicity
 - Delay stored on site for up to 100 years prior to disposal to allow Cs/Sr decay
 - Intrinsically safe passively cooled HA product store


- RH TRU or GTCC wastes
 - Primarily hulls and ends
 - Suitable for WIPP type repository with change in legislation
 - Volume minimized through compaction
 - Suitable for disposal in existing transport containers (development of alternative to RH-
 - T 72B recommended)
- CH RU
 - Suitable for WIPP type repository with change in legislation
 - Provision of decontamination facility to minimize volumes generated
 - Supercompaction to reduce waste volume
- MLLW & LLW
 - Supercompaction to reduce waste volume
 - Sub-surface commercial disposal



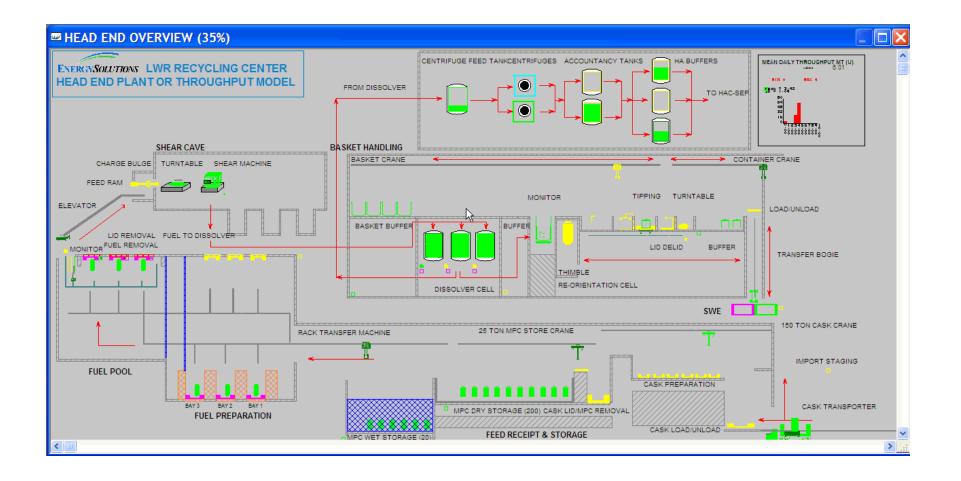
 The wastes produced from recycling the nuclear fuel that has provided the annual electricity needs for over 250,000 family homes

- Or to put it another way:
 - If all the electricity consumed by an average US household over their lifetime was generated by nuclear fuel, then the resulting wastes from recycling would be:

ENERGYSOLUTIONS

Waste Streams

	Source	Volume m³/yr	Mass Kg/MTIHM	Containers #/yr	Disposal Container	Disposal
High Level Waste	Highly active liquid waste	97	181	119	HLW canister	Geologic repository
Class C waste	Maintenance and clean up operations	113	60	282	100/55 gallon drums	Commercial disposal
Class A waste	Maintenance and clean up operations	1,335	764	3,602	100/55 gallon drums	Commercial disposal
	Grouted tritiated water plus C-14 slurry & salt concentrate	11,122	16,400	672	Half-height 20' cargo containers	Commercial disposal
	Pyrolized Solvent Ash	132	133	349	100 gallon drums	Commercial disposal
	Spent Ion Exchange Resin	11	7	2.1	210-Liners	Commercial disposal
Contact Handled TRU waste	Maintenance and clean up operations	130	69	326	100/55 gallon drums	Salt repository
Remote Handled TRU and GTCC waste	Fuel assembly hulls and ends plus I-129 waste	371	639	419	RH-72B	Salt repository
Kr 85	Dissolver Off-gas	3	N/A	103	Gas bottles	Decay storage and discharge



Throughput and Lessons Learned Assessment

- Operational Research (OR) Model used to analyze baseline commercial design to identify major bottlenecks and incorporate design solutions
 - Fuel handling
 - 2 fuel removal machines instead of one
 - BWR fuel handling
 - Handling of multiple assemblies for concurrent shearing
 - Dissolver acid heat up times
 - Pre heat of dissolver acid
 - Fuel campaigning
 - Campaigning assumed not required
 - Use of Reliability Centered Maintenance processes to maximize operability of key equipment and identify preventative maintenance regimes.
- The model assumes a realistic 2 month outage annually, plus reliability/availability data from UK operational facilities
- Significant experience in increasing production on 2nd and 3rd generation facilities
 - AMWTP versus WTC supercompaction throughput increased sixfold using similar equipment
 - Sellafield 3rd vitrification line versus lines 1&2 throughput increased twofold

OR model dynamic simulation

Closing the Fuel Cycle- Conclusions

- Closing the fuel cycle will:
 - Solve the nuclear waste problem
 - Significantly reduce amount, heat load and toxicity of high level nuclear waste
 - Minimize risk of proliferation, plutonium is consumed and pure plutonium never produced
 - Improve US energy security, reduce dependence on foreign energy supplies
- Recycling will be paid for by the nuclear industry not the government
- Allows carbon emissions to be reduced by supporting the nuclear renaissance
- Create thousands of much needed US jobs many in manufacturing and construction

