MIT Future of Nuclear Fuel Cycle Study - principal issues

Ernest J. Moniz Cecil and Ida Green Professor of Physics and Engineering Systems Director, MIT Energy Initiative

• In 2003 MIT issued the study: The Future of Nuclear Power

- Proposed first-mover incentives for new nuclear power plants, helping spur 2005 legislation
- Generally well received (eventually!)
- Major changes since 2003
 - Update Recently Published on the way to new study
- MIT interdisciplinary study on The Future of the Nuclear Fuel Cycle
- Status Report
 - What has changed
 - Report Objectives
 - Critical questions that must be addressed

Study Sponsors

- Electric Power Research Institute
- Idaho National Laboratory
- AREVA
- General Electric
- Westinghouse
- NAC

Update of MIT 2003 Future of Nuclear Power Study

- Compared to 2003, motivation to make more use of nuclear power is greater
- Public acceptance of nuclear power is greater
- Performance of nuclear plants has been excellent
- Nuclear plants are still more expensive (cost/kwh) than coal or natural gas but removal of risk premium and/or CO2 can make nuclear power competitive
- Government first mover incentives have not been effective to date to make firm nuclear power commitments
- Clear need for a robust long term waste management policy
 - Interim storage
 - Fuel cycle alternatives including reactor technologies
 - Disposal options

Bottom Line Conclusions

λ After 6 years:

- λ No new plants under construction in US
- Insufficient progress is being made on waste management (some will argue negative progress)
- Government assistance program not effective and needs to be improved

λ If this is not done:

Nuclear power will diminish as a timely and practical option at a scale where it matters for climate change mitigation

MIT Future of the Nuclear Fuel Cycle Study

- **λ Two Overarching Questions:**
 - 1. What are the long-term nuclear fuel cycle choices that have desirable features?
 - 2. What are the implications for near-term policy choices?

Ground Rules and Assumptions

Range of Cases Analyzed to Understand Sensitivity of Results to Input Assumptions

- λ Alternative nuclear growth rates considered
- **λ** Several fuel cycles analyzed/baseline cases and alternatives
 - λ Once through
 - λ Recycle for fissile fuel recovery
 - λ Recycle for waste management
 - Evaluate in "modern" context of U resources and LWR staying
 power
- λ Primary emphasis on the United States but within a global context
- λ Emphasize fuel cycle dynamics and value of options for different growth scenarios and technology development

What are Nuclear Reactor and Fuel Cycle Economics?

(In a World Where the Costs for All Energy Options Are Rising)

- λ Update the economic assessment of nuclear reactor costs in the 2003 MIT report considering
 - λ Overnight Costs
 - λ Economics for regulated and unregulated utility markets
 - λ Implications of federal-government first-user incentives
 - λ Implications of carbon-credit trading
- λ What are the economics of once through and closed fuel cycles?
- λ What is known about fast-reactor economics?
 - λ Reactor costs dominate cost of nuclear power

Baseload Electricity Costs (cents/kWh)

	case	Base -CO2	\$25/ton capital cost	same
Nuclear	8.4		6.6	6
Coal	6.2		8.3	
Gas (\$7/mmBtu)	6.5		7.4	

What Should Be Our Used Nuclear Fuel Storage Strategy?

- λ Storage can provide time to determine what is more important within the duality of Used Nuclear Fuel
 - λ Resource
 - λ Waste
- λ Storage is a nuclear-chemical process: heat and radioactivity decrease with time
 - λ Lowers reprocessing costs and risks
 - λ Lowers transport costs and risks
 - λ Increases repository capacity
- Approach to storage should be integral to fuel cycle choices/ choice of storage time has major fuel-cycle impacts
- λ Three classes of storage option
 - λ At reactor (U.S.)
 - λ Centralized monitored retrievable storage
 - λ Combined Storage/Repository

What Are the Preferred Fuel Cycles for a Sustainable Future?

Compare/Contrast Multiple Cycles To Understand Range of Implications

- λ What are the implications to the repository and other waste management facilities of alternative fuel cycles?
- λ What are the uranium resource implications?
- λ What are the nonproliferation implications to the world of our choices for fuel cycles?
- λ What are the technical challenges of the alternative fuel cycle options?

What Are the Technical Challenges and Viability of Alternative Fuel Cycle options?

- λ Must consider the complete fuel cycle
 - λ Reprocessing
 - λ Fuel Fabrication
 - λ Reactors
 - λ Waste Disposal/Multiple streams from different fuel cycles
 - λ Separations small part of cost of reprocessing
- λ Commercial reprocessing is a relatively new enterprise
 - λ Value for long term waste management?

R&D Recommendations

- λ Align with reality of next decades
 - λ Global Uranium Resource Assessment
 - λ Enhancement and life extension of LWRs
 - λ New build LWRs/new materials, fuels,...
 - λ Long term dry storage assessment/engineered barriers
- λ Alternative disposal options
 - $\lambda\,\,$ E.g. MA's and deep boreholes

R&D Recommendations

- λ Explore long term options
 - λ Closed fuel cycles and fast reactors
 - λ Safety and operations analysis of fuel cycle facilities
 - Advanced simulation tool development/reactors and waste management systems
- λ Nuclear materials security
- λ Demonstrations?

Summary & Conclusions

- λ Changes since 2003 indicate the need to rethink fuelcycle strategies
- λ There is time to assess alternatives before selecting a path forward/focus on optionality.
- There are major questions that need to be addressed to provide <u>a durable widely-supported long-term fuel-cycle</u> <u>strategy</u>
- λ The goals of the MIT study are to aid in the process to develop such a strategy
- A Identification of research, development and demonstration needs aligned with important fuel cycle options.

