

U.S. Nuclear Waste Technical Review Board

Nuclear Waste Assessment System for Technical Evaluation (NUWASTE)

Presented to: NWTRB Workshop on Evaluation of Waste Streams Associated with LWR Fuel Cycle Options

Presented By: Gene Rowe Mark Abkowitz Nigel Mote Bruce Kirstein

June 6, 2011

Agenda

- Objectives
- Principles
- Structure
- Waste Stream Calculation
- Assembly Processing
- Calculation Methodology

U.S. Nuclear Waste Technical Review Board

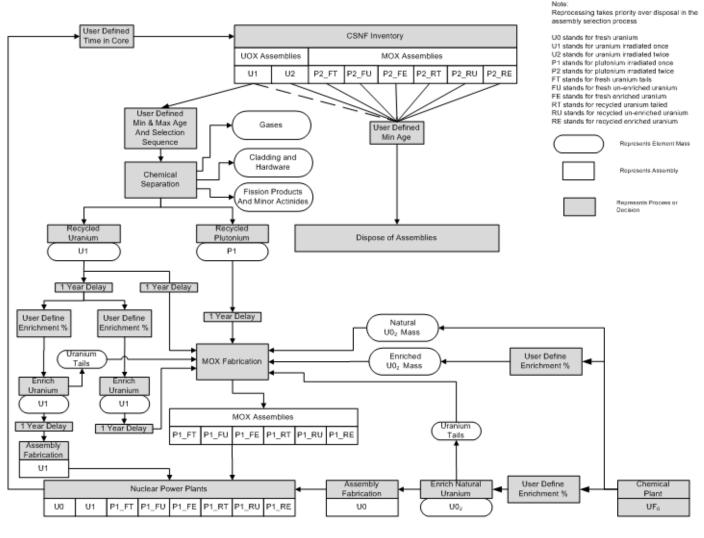
Objectives

- Understand the impacts of potential fuel cycle initiatives on the generation and management of SNF, HLW and other radioactive waste streams.
- Create ability to vary system inputs to represent different initiatives that DOE may consider.
- Evaluate the impact on selected parameters, such as:
 - Number of surface dry storage casks required
 - Number of disposal waste packages generated
 - Mass of natural uranium required
 - New waste streams
 - Proliferation risk
 - Cost

Principles

- Based on simple material balances of assemblies and masses
- Built on fundamental physics concepts and methods
- Covers the full life cycle of US nuclear power production and waste disposition
- Utilizes data from open literature and DOE documents
- Deterministic methodology that enables the user to explore the sensitivity to various inputs
- Currently focused on present light water reactor and reprocessing technology

Structure


- Waste Stream Quantities
 - Initial conditions
 - Assembly discharge projections
- Assembly Processing
 - Material balance
 - Mass
 - Assemblies
 - Transitions
 - Mass to assemblies
 - Assemblies to mass
 - Isotopic concentrations determined using ORIGEN/SCALE
 6.0
 - NUWASTE uses a linear relationship as a function of burnup to determine each isotope concentration

Isotopes

NUWASTE Structure (Cont'd)

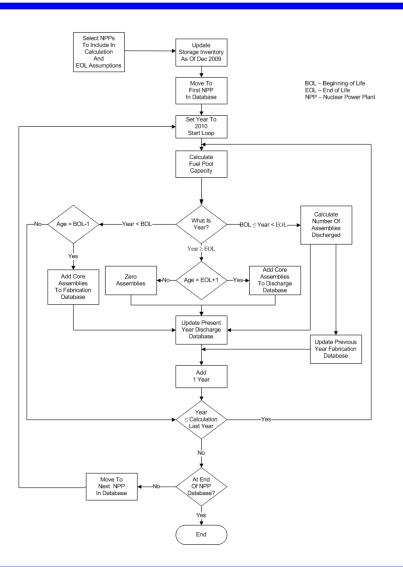
WWASTE Functional Diagram

www.nwtrb.gov

Waste Stream Calculation

- Initial Conditions
 - Plant parameters
 - MW_t, MW_e, Core size, Fuel pool size, BOL, EOL, Life extension status
 - Assembly storage status as of December 2009
 - Wet storage
 - MTHM
 - Number of assemblies
 - Dry storage
 - MTHM
 - Number of assemblies
 - Number of dry storage casks

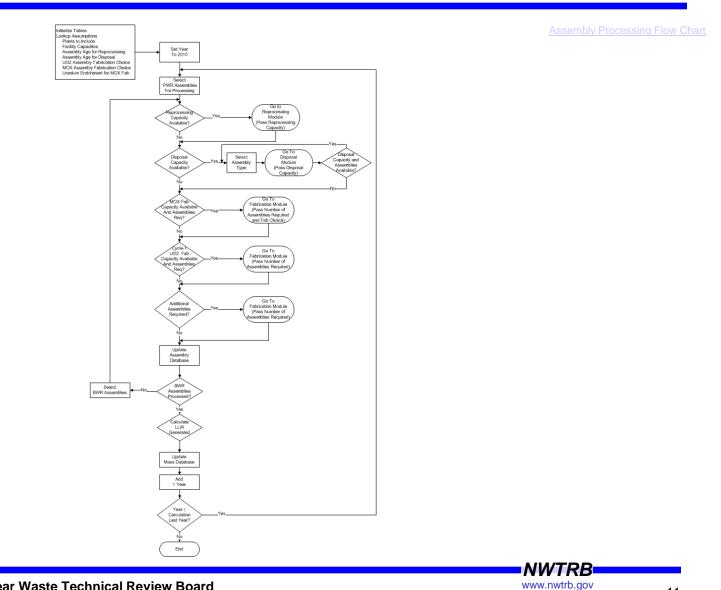
Waste Stream Calculation (Cont'd)


- Assembly Discharge Calculation
 - Life extension
 - Life extension status
 - Extended
 - Application submitted
 - No application submitted
 - Life extension duration
 - User input
 - Generally use 20 years
 - Plants to include in calculation
 - Present plants only
 - Present plus planned plants
 - Sufficient plants to maintain present nuclear generating capacity

Waste Stream Calculation (Cont'd)

Waste Stream Flow Charl

Assembly Processing


- Program Contains Two Nested Loops
 - Primary loop cycles through assembly type (PWR or BWR)
 - PWR assemblies are processed first
 - Processing sequence:
 - Assembly reprocessing (fresh uranium UOX only)
 - Assembly disposal
 - MOX assemblies
 - Fresh uranium UOX assemblies
 - Separated uranium UOX assemblies
 - Assembly fabrication
 - MOX assemblies
 - Fresh uranium UOX assemblies
 - Separated uranium UOX assemblies
 - Secondary loop cycles through years
 - Starts at 2010
 - End date is a user defined variable

Assembly Processing

11

Calculation Methodology

•Calculation of Assembly Fabrication and Core Discharges

- -Full core loading assembly fabrication one year before BOL
- -Assume plants start operation on January 1 of BOL year
- –Assume same number of assemblies discharged each year during plant operation after 2009

Assemblies / year = $\frac{MW_{t} \times CapacityFactor \times 365 days / year}{MW days / MTU \times MTU / Assembly}$

-Full core discharge the year after plant shutdown

Enrichment (Ref: Management of Reprocessed Uranium)

$$d_i = c_i \times \frac{b}{a} \times f_i$$

- Where: $a = {}^{235}$ U initial concentration $b = {}^{235}$ U final concentration c_i = Initial concentration of isotope *i* d_i = Final concentration of isotope *i* f_i = Factor to account for the mass difference between ²³⁵U and isotope i
- Feed and Tails Mass (Simple mass balance)

$$T = E \times \frac{(e - f)}{(f - t)}$$

$$F = Mass of uranium feed$$

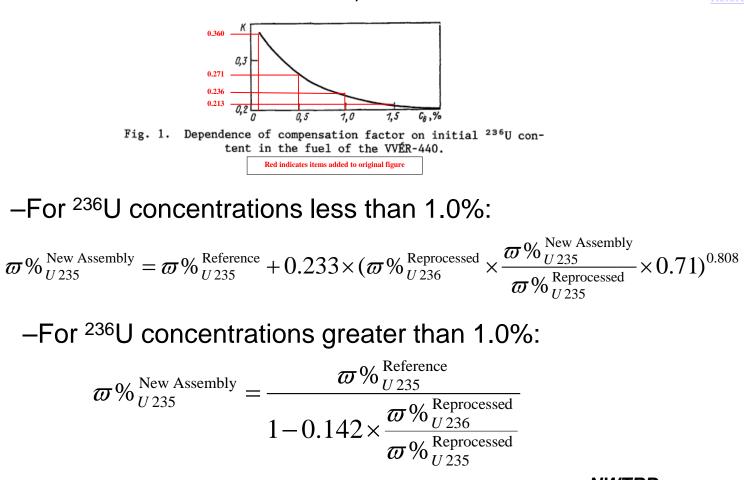
$$E = Mass of enriched uranium$$

$$T = Mass of tails$$

$$f = Weight \% of ^{235}U \text{ in feed mass}$$

$$e = Weight \% of ^{235}U \text{ in enriched mass}$$

$$t = Weight \% of ^{235}U \text{ in enriched mass}$$

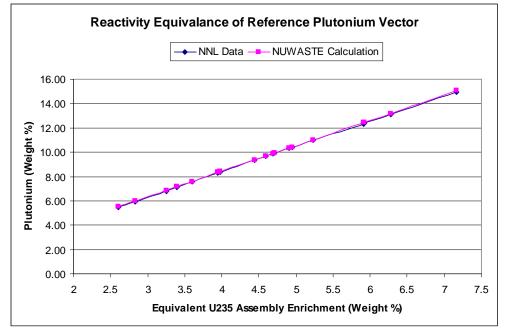


F =

0

www.nwtrb.go

• 2nd Cycle UOX Assembly Fabrication (Ref: *Compensation for* ²³⁶*U in the Fuel of the VVER-440*)



www.nwtrb.gov

MOX Assembly Fabrication (Ref: UK NNL memo)

Reference 11

 For a reference plutonium vector, the plutonium content as a function of equivalent UOX assembly (blue line):

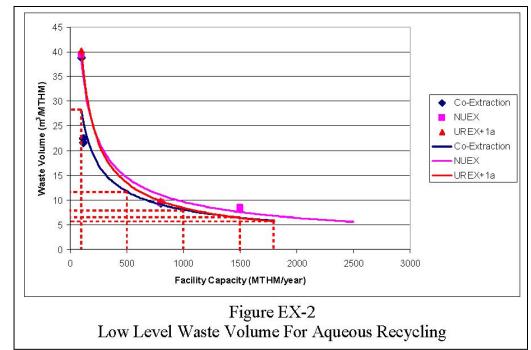
- Linear function that can be represented by (red line):

Pu Content_{ref} = $2.086622807 \times (Equivalent UOX Enrichment) + 0.090394737$

• The required plutonium content, assuming a different plutonium vector, can be calculated using:

Pu Content_{actual} = Pu Content_{ref}
$$\times \frac{Pu Quality_{ref}}{Pu Quality_{actual}}$$
 where:

Pu Quality =
$$\sum_{All Pu Nuclides}$$
 Pu Vector_i ×Effective Fissile Coefficient_i


 Above calculation assumes 0.2 % ²³⁵U in source uranium. To adjust for a uranium content different from 0.2%:

Amount Pu Content Must be Adjusted = $\left(\frac{\text{Pu Content}_{\text{actual}}}{\text{Equivalent UOX Enrichment-0.2}}\right) \times (\%^{235} \text{U in MOX Assembly-0.2})$

16

• LLW (Ref: DOE document FCRD-USED-2010-000033, Rev 0)

- Mathcad was used to develop function:

LLW Volume = $Mass_{Reprocessed} \times 406.912 \times Capacity^{-0.569}$

www.nwtrb.gov

Direction for Further Analysis and Development

- Identify and evaluate additional scenarios
 - New data sets
 - Further insights and sensitivity analysis
- Gain feedback from June workshop
- Explore impact of natural uranium mining on nuclear waste generation
- Incorporate additional functionality
 - Facility cost
- Consider extending NUWASTE capabilities
 - Centralized storage capacity needs
 - Transportation requirements at various fuel cycle stages
 - Alternative reprocessing and reactor technologies
 - Disposition of DOE HLW and SNF

