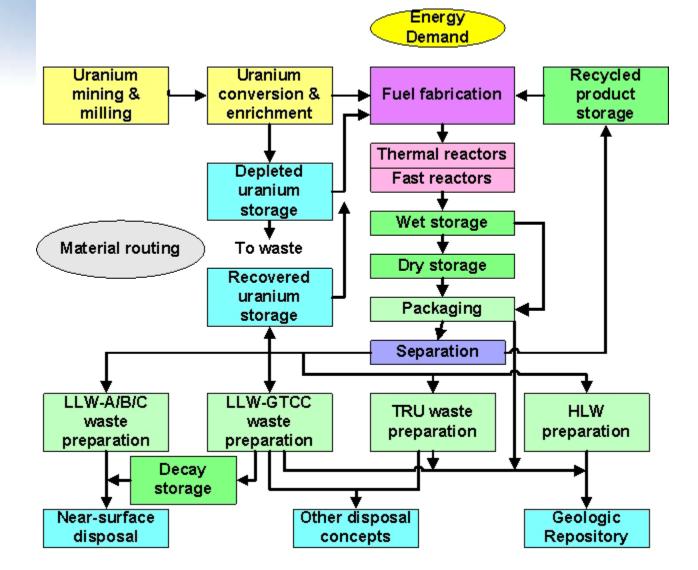
VISION Contributions to DOE NWTRB Benchmark

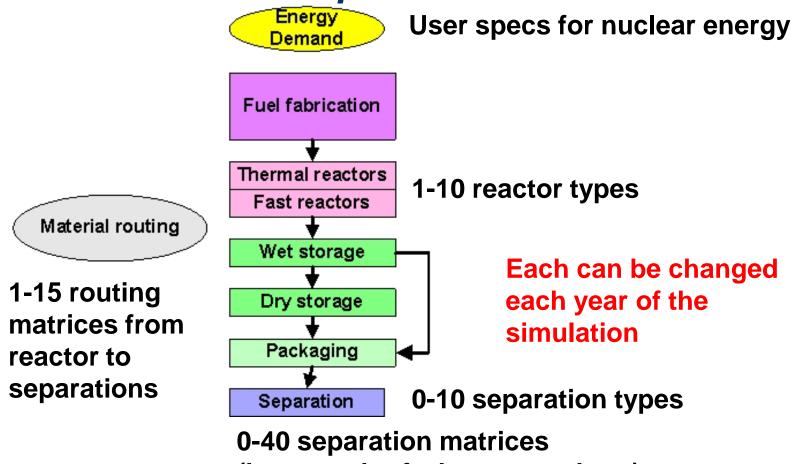
Steve Piet

June 6-7, 2011



VISION is a tool for exploring advanced fuel cycle options

- Any U/TRU fuel cycle (probably Th/U in the future)
- Any U/TRU reactor
 - Models types of reactors, not individual reactors
- Any separation technology
- Technologies can be changed each year to study transitions
 - Nuclear electricity growth
 - Reactor mix
 - Fuel type and fuel fabrication capacity
 - Separation performance and capacity
 - Repository loading and receipt rate
 - Routing (reactor to separations, separations to fuel fab, etc.)
- 81 isotopes and groups of isotopes


VISION is a tool for exploring advanced fuel cycle options

NOTE: noncommercial wastes are not addressed

Some of VISION's capabilities

(how much of what goes where)

Benchmarks and comparisons

- Always take far longer and require far more iterations and specifications than anticipated.
 - Always start with general specs, then require additional iterations with more details to resolve differences in interpretations, etc.
- Cover only a portion of what a model requires as input.
- Cover only a portion of what a model provides.
 - Comparisons only possible on features common to all participating models
- Specifications often written to reflect the peculiarities of one of the models involved.
- Specifications never seem to be completely internally consistent, in part because real systems are more complex than any model.

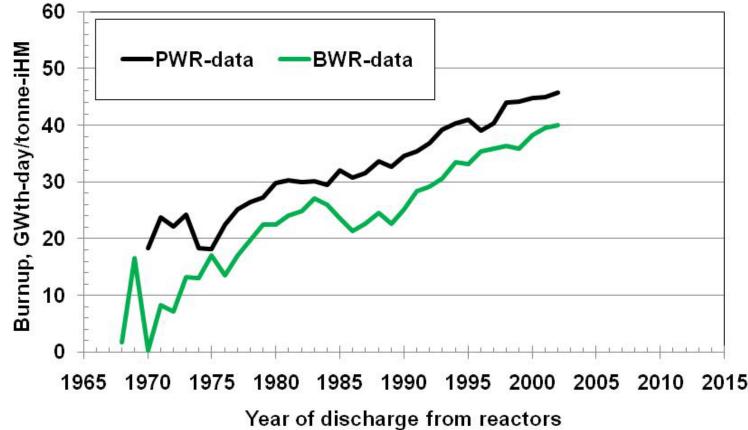
Adjustments and interpretations

VISION	Adjustment to specifications
Does not model hundreds of reactors	Can model ≤ 10 reactor "types", each with fixed lifetime. In this case: PWR-40, PWR-60, BWR-40, BWR-60
Has only one "legacy" retirement profile	Start calculations in 1960 so that existing reactors retire on time.
No true steady state develops (retirements, builds, isotope decay)	Obtain such results from as-stable-as- possible portion of a simulation
Does not do reactor physics, incorporates input/output fuel recipes. No recipes for re-enriched uranium.	Did not calculate re-enrichment cases.
Does not consider # of fuel assemblies	Did not calculate

Adjustments and interpretations (continued)

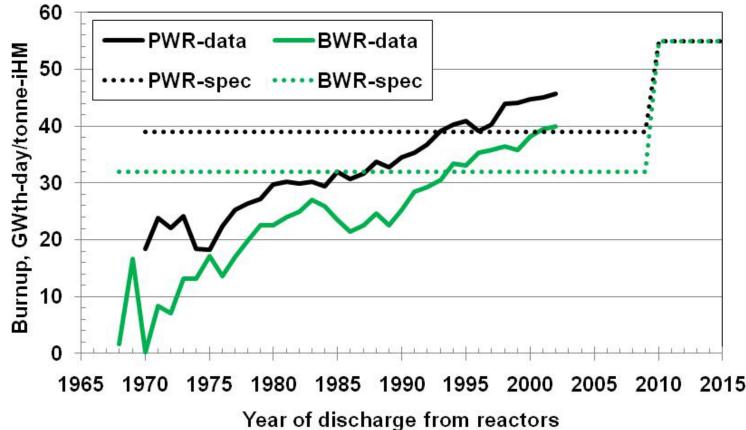
- No two models handle "routing" the same way
- VISION is separation-centric
 - User specifies order in which each separation type "pulls" from used fuel inventories (rather than define "push" from used fuel)
 - Separation type 1 goes first, then 2, etc.
 - Most attention to waste resulting from flow through separations
- If used fuel direct to repository, VISION simply draws on fuel in the order that reactor types are defined in the input deck, in this case ...
 - PWR-40
 - PWR-60
 - BWR-40
 - BWR-60

Adjustments and interpretations (continued)

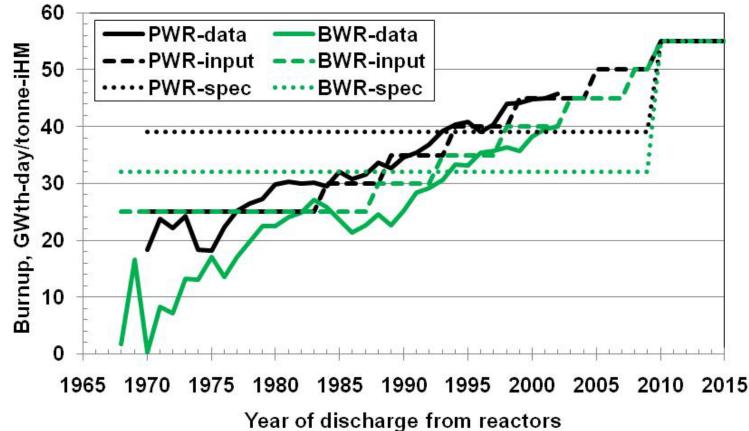

- Can specify burnup or input enrichment, but not both
 - If LWR burnup, 4th order polynomial curve fit to PWR data provides input/output isotopic composition

	PWR	BWR	PWR	BWR
Spec GWd/tonne	39	32	55	55
U235 spec	3.43%	2.39%	4.40%	4.35%
U235 VISION	3.38%	2.89%	4.59%	4.59%

- Known history of reactor start, constant 90% capacity factor, and specified constant burnup ("specs") lead to 50,800 tonnes-iHM in 2000 versus historical data of 42,600 tonnes-iHM.
 - Keep reactor start data, hence reactor retirement, 90% capacity factor after 2000, specified burnup after 2010
 - Adjust pre-2010 burnup and capacity factor to match 42,600 tonnes-iHM (and find it then matches the spec in 2010).

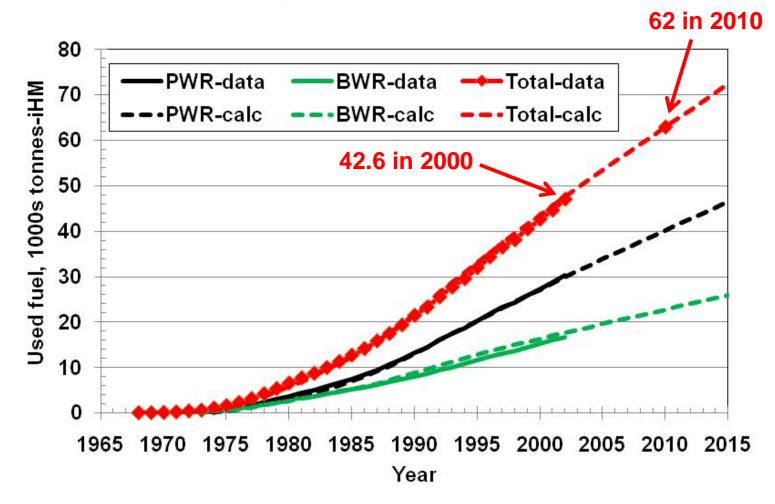


Adjusted burnup before 2010 to approximate the historical data



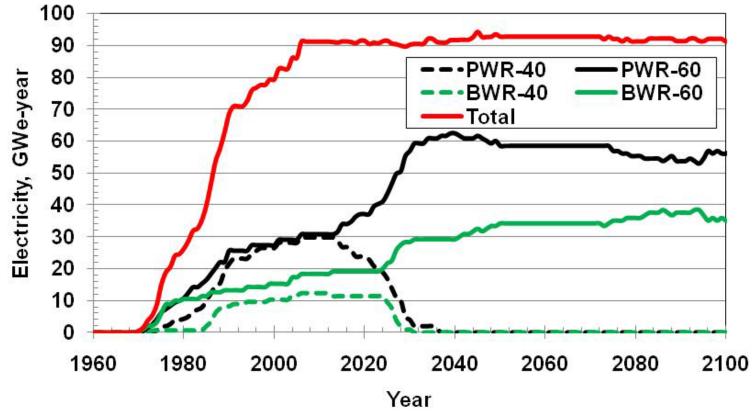
Adjusted burnup before 2010 to approximate the historical data

Adjusted burnup ("input") before 2010 to approximate the historical data



Burnup, enrichment, capacity factor

When start/PWR	1972	1984	1989	1994	1999	2005	2010	
When start/BWR	1970	1988	1993	1998	2003	2008	2010	
Burnup	25	30	35	40	45	50	55	
% U235	2.43%	2.76%	3.10%	3.46%	3.82%	4.20%	4.59%	
Capacity factor PWR	60%	65%	70%	75%	80%	85%	0.0%	
Capacity factor BWR	00%	03%	65%	70%	75%	00%	90%	


Used fuel inventory

Electricity

Current fleet modeled as either 40 or 60-year lifetime. Per spec, all new reactors are 60-year lifetime.

Total electricity is not exactly constant as reactors are retiring and coming on line with differing unit sizes.

Phase 1 – End of 2009 used fuel inventory (tonnes)

	PWR	BWR	Total
Wet storage (≤10 years)	13,431	6,615	20,046
Dry storage (>10 years)	25,516	15,503	41,019
Total	38,948	22,118	61,065

Phase 1 – End of 2009 used fuel inventory (actinides, tonnes)

	U232	U233	U234	U235	U236	U238	U-total
PWR	0.0	0.0	0.5	267.3	157.8	36,622.8	37,048.4
BWR	0.0	0.0	0.2	151.8	79.5	20,921.1	21,152.7
	Pu238	Pu239	Pu240	Pu241	Pu242	Pu244	Pu-total
PWR	6.4	205.1	96.3	33.4	23.7	0.0	364.8
BWR	2.8	112.9	51.5	17.0	11.4	0.0	195.6
	Np237	Am	Cm	Bk-Cf	He	Other	MA-total
PWR	16.6	26.0	1.3	0.0	0.0	0.0	43.9
BWR	8.0	13.5	0.5	0.0	0.0	0.0	22.0

58,800 tonnes (>96% of used fuel) of recyclable material

Phase 1 – End of 2009 used fuel inventory (fission products, tonnes)

						Inert gas-						
	H3	C14	C other	Kr81	Kr85	other					Subtotal	
PWR	0.00	0.00	0.00	0.00	0.55	244.38					244.93	Volatiles
BWR	0.00	0.00	0.00	0.00	0.27	121.54					121.81	Volutiles
				Halogen-								
	Tc99	Tc other	1129	other							Subtotal	
PWR	33.47	0.01	7.85	3.68							45.03	Long-lived
BWR	17.06	0.01	4.00	1.88							22.95	Long-inteu
	Rb	Sr90	Sr-other	Cs134	Cs135	Cs137	Cs-other	Ва			Subtotal	
PWR	15.05	17.91	15.96	0.82	16.57	41.60	48.05	76.80			232.75	Heat
BWR	7.57	8.94	8.09	0.36	9.00	20.71	24.65	38.34			117.68	Tical
										TM-		
	Zr93	Zr95	Zr-other	Ru106	Pd107	Se79	Cd113m	Sn126	Sb125	other	Subtotal	T
PWR	30.92	0.08	123.68	0.39	10.18	0.25	0.01	1.21	0.09	351.54		
BWR	15.56	0.04	62.03	0.19	5.07	0.13	0.00	0.61	0.05	175.75	259.43	metals (TM)
								LA-				
	Ce144	Pm147	Sm147	Sm151	Eu154	Eu155	Ho166m	other			Subtotal	Lanthanidaa
PWR	0.54	0.72	2.63	0.61	0.81	0.19	0.00	443.94			449.44	Lanthanides
BWR	0.27	0.36	1.33	0.35	0.37	0.09	0.00	222.64			225.40	(LA)

2,238 tonnes of fission products

Phase 2 – 2010 to 2100 used fuel inventory (tonnes)

2100 inventory	PWR	BWR	Total
Wet storage (≤10 years)	13,405	9,141	22,546
Dry storage (>10 years)	143,031	79,542	222,573
Total	156,436	88,683	245,119

2010 to 2100	PWR	BWR	Total	
Discharged	117,488	66,565	184,054	

Discharge ~2000 tonnes/year

Phase 2 – 2010 to 2100 used fuel discharged (actinides, tonnes)

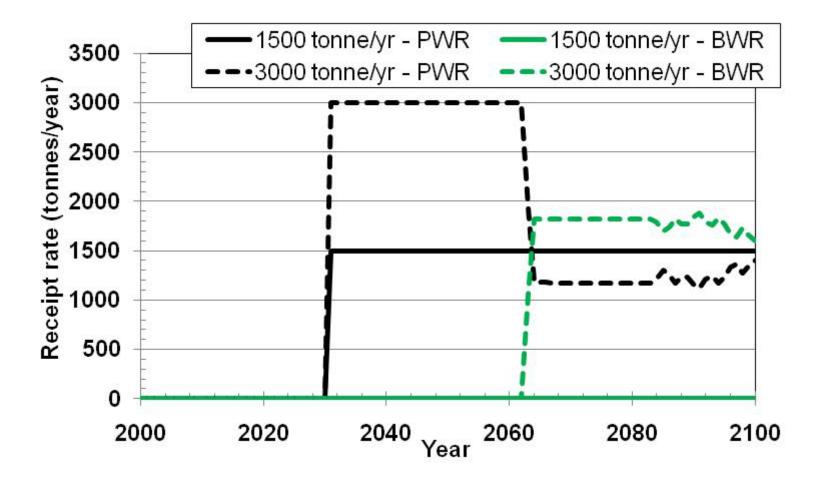
	U232	U233	U234	U235	U236	U238	U-total
PWR	0.0	0.0	5.2	846.7	712.2	107,736.8	109,301.0
BWR	0.0	0.0	2.9	479.7	403.6	61,039.5	61,925.7
	Pu238	Pu239	Pu240	Pu241	Pu242	Pu244	Pu-total
PWR	38.9	691.8	352.2	100.1	112.3	0.0	1,295.3
BWR	22.2	392.0	199.5	58.4	63.6	0.0	735.7
	Np237	Am	Cm	Bk-Cf	He	Other	MA-total
PWR	84.9	140.4	7.6	0.0	0.4	0.0	233.3
BWR	48.1	77.9	4.4	0.0	0.2	0.0	130.6

174,000 tonnes (>94% of used fuel) of recyclable material

Phase 2 – 2010 to 2100 used fuel discharged (fission products, tonnes)

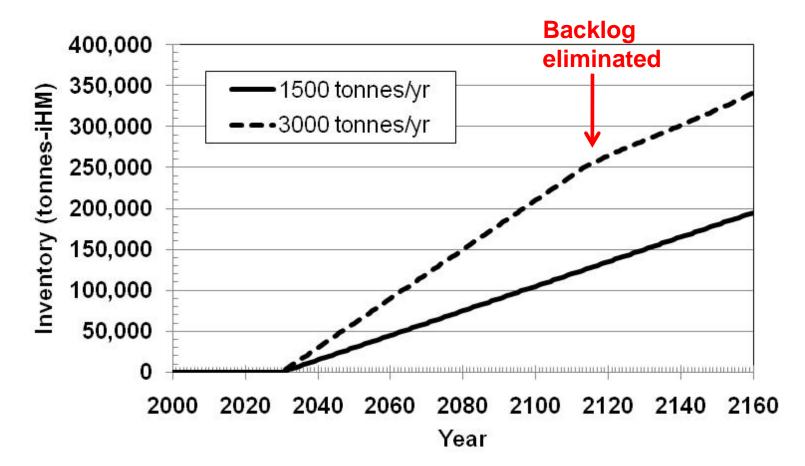
						Inert gas-						
	H3	C14	C other	Kr81	Kr85	other					Subtotal	
PWR	0.00	0.00	0.01	0.00	1.62	1085.38					1,087.02	Volatiles
BWR	0.00	0.00	0.00	0.00	0.96	615.04					616.01	Volutiles
				Halogen-								
	Tc99	Tc other	I129	other							Subtotal	
PWR	143.35	0.04	34.11	15.49							192.99	Long lived
BWR	81.23	0.02	19.33	8.78							109.36	Long-lived
	Rb	Sr90	Sr-other	Cs134	Cs135	Cs137	Cs-other	Ва			Subtotal	
PWR	68.23	69.57	69.93	0.20	82.11	162.38	202.26	380.82			1,035.50	Upot
BWR	38.62	39.95	39.63	0.30	46.54	93.18	114.61	214.45			587.27	Heat
										TM-		
	Zr93	Zr95	Zr-other	Ru106	Pd107	Se79	Cd113m	Sn126	Sb125	other	Subtotal	
PWR	137.46	0.00	566.74	0.00	45.18	1.13	0.03	5.31	0.04	1576.57	2,332.46	Transition
BWR	77.90	0.01	320.63	0.07	25.60	0.64	0.02	3.01	0.04	893.29	1,321.20	metals (TM)
								LA-				
	Ce144	Pm147	Sm147	Sm151	Eu154	Eu155	Ho166m	other			Subtotal	
PWR	-0.02	0.19	12.24	2.36	2.48	0.34	0.00	1,993.16			2,010.75	Lanthanides
BWR	0.08	0.23	6.93	1.34	1.50	0.23	0.00	1,129.12			1,139.42	(LA)

10,400 tonnes of fission products



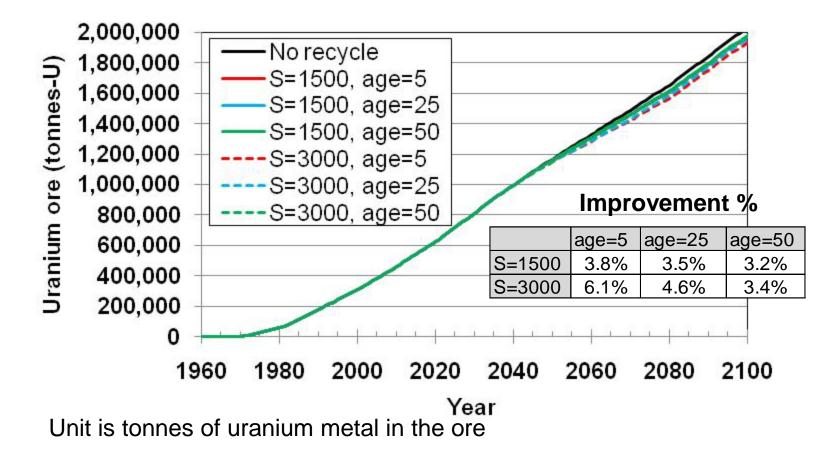
Phase 3 – Repository, but no recycling

- Cases specified, both start repository in 2030
 - 1500 tonnes/year backlog continues to grow
 - 3000 tonnes/year backlog eliminated in 2115
 - Per spec, there is no limit to repository capacity
- VISION sends waste (once old enough) to repository based on the order of reactors defined in the input file
 - In this case, takes PWR-40, then PWR-60, BWR-40, PWR-60
- Isotopic data in spreadsheet



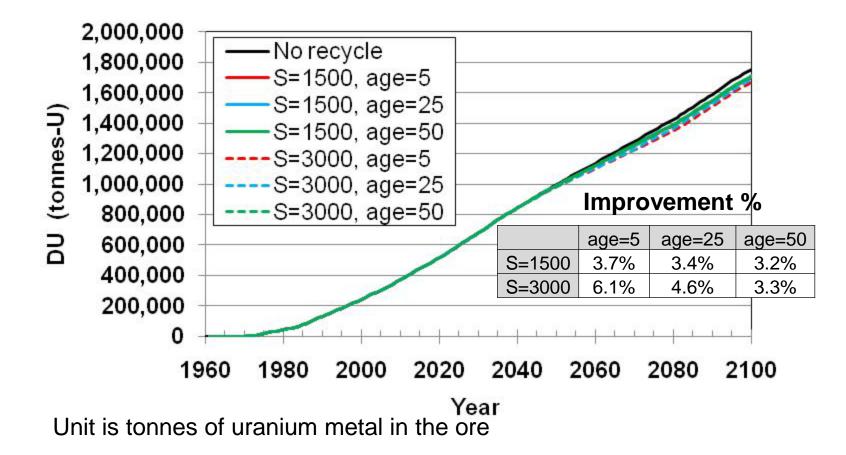
Phase 3 – Repository receipt rate (tonnes/yr)

Phase 3 – repository inventory (tonnes)

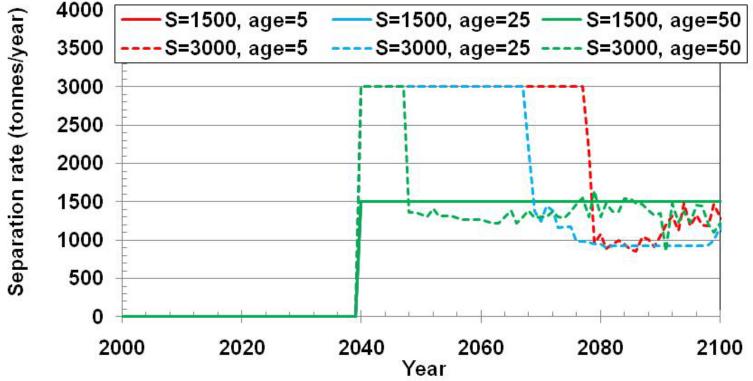


Phase 4 – Recycling, but no repository

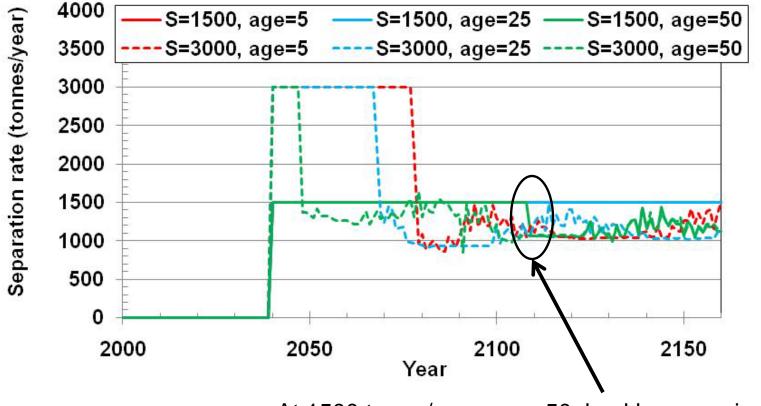
- MOX-RU-Pu, fuel recipe in Library has burnup of 50 GWth-day/tonne
 - Recycles RU from separated LWR UOX
 - Recycles Pu (11% of fresh MOX)
 - Best possible MOX-Pu uranium improvement (1 recycle) is 14%
 - x 64% of the fuel x 2/3 of the time (2010-2100) \rightarrow 6.0%
- Minimum aging before separation
 - 5 years, 25 years, 50 years
- Separation cases specified, both start in 2040, tonnes-iHM
 - 1500 t/year backlog grows, U savings **3.8%, 3.5%, 3.2%**
 - 3000 t/year backlog gone in 2118, U savings 6.1%, 4.6%, 3.4%
- Per spec, BWR fuel not recycled
- Isotopic data in spreadsheet



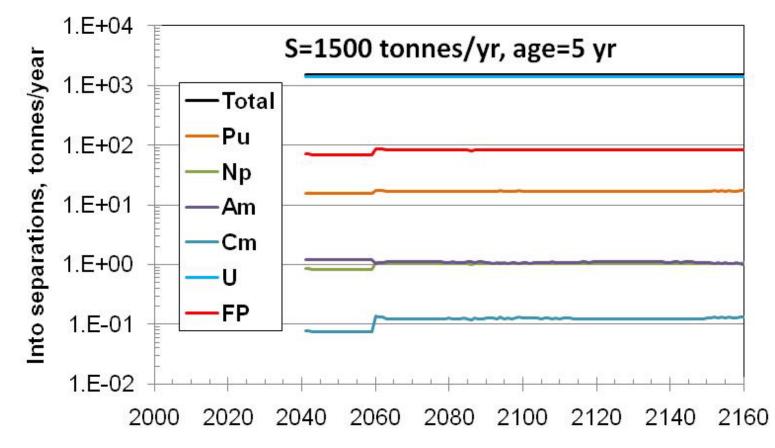
Phase 4 – Recycling – uranium ore consumption

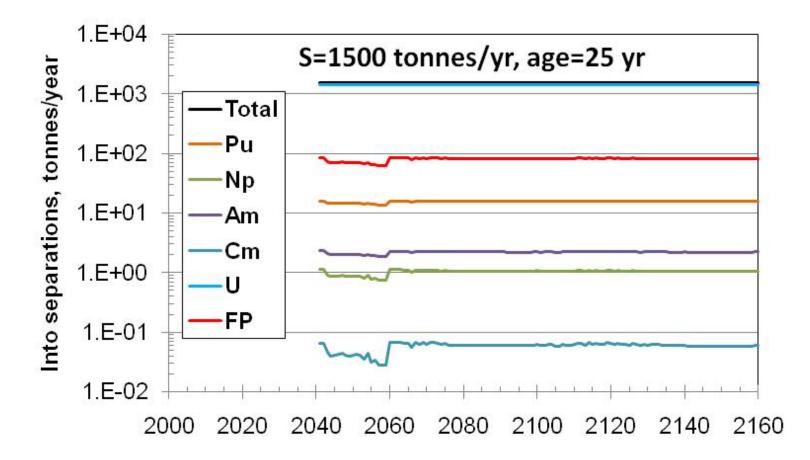


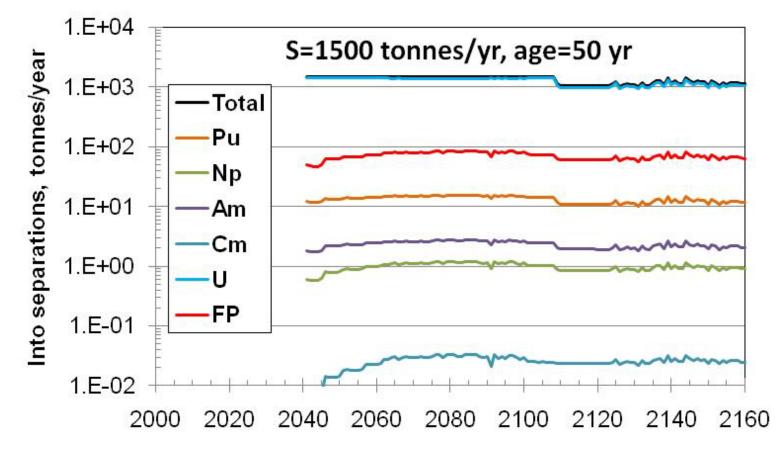
Phase 4 – Recycling – depleted uranium generated



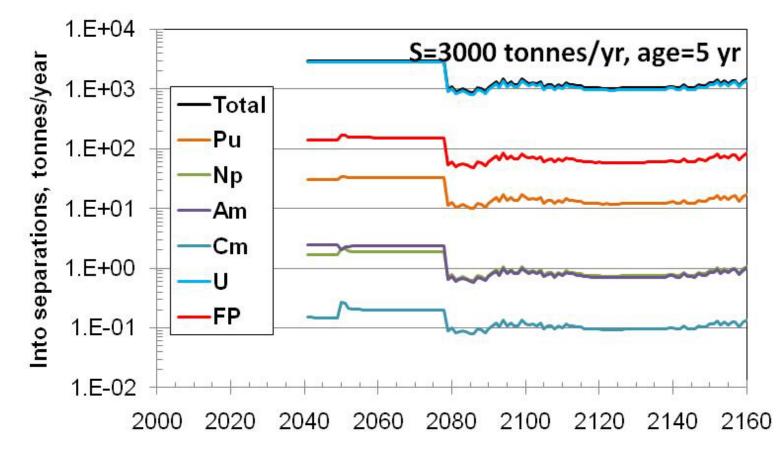
At 1500 tonne/year, backlog continues

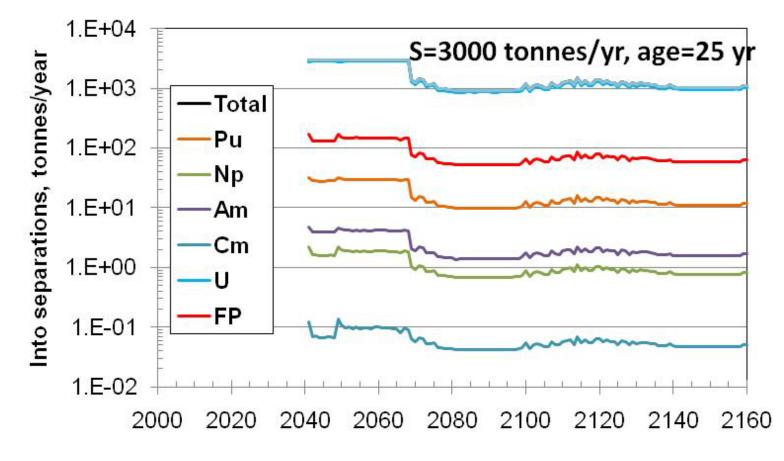

At 3000 tonne/year, backlog gone in 2048 (age=50), 2068 (age=25), 2078 (age=5)

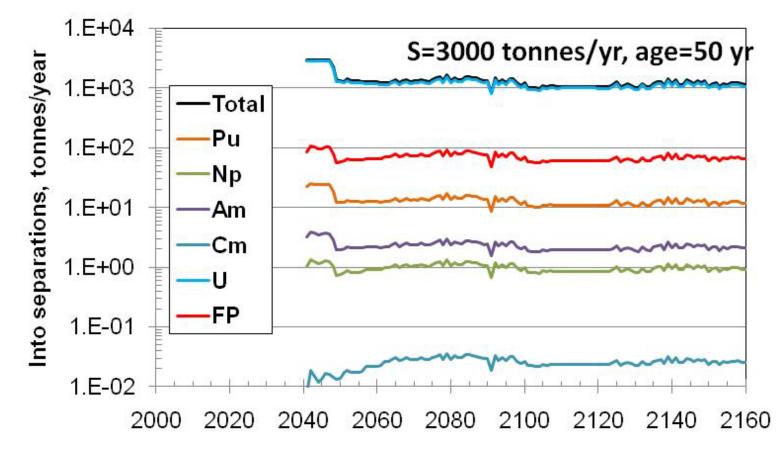

At 1500 tonne/year, age=50, backlog gone in 2109

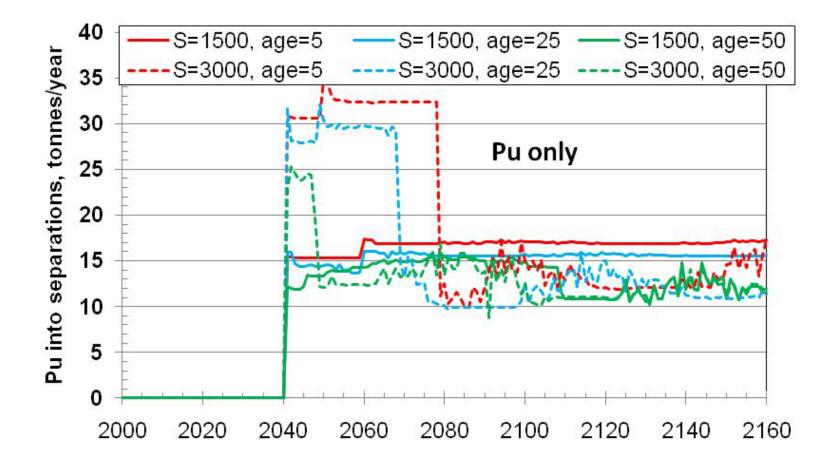


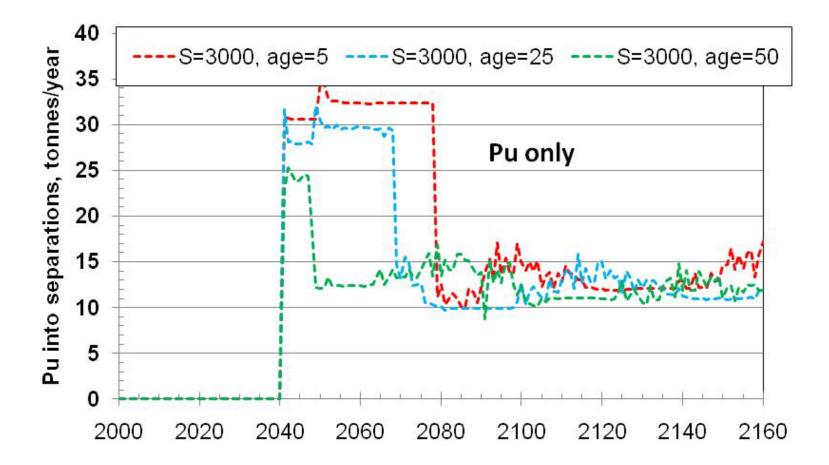
Two effects at work: isotope decay and different BU fuel used at different times



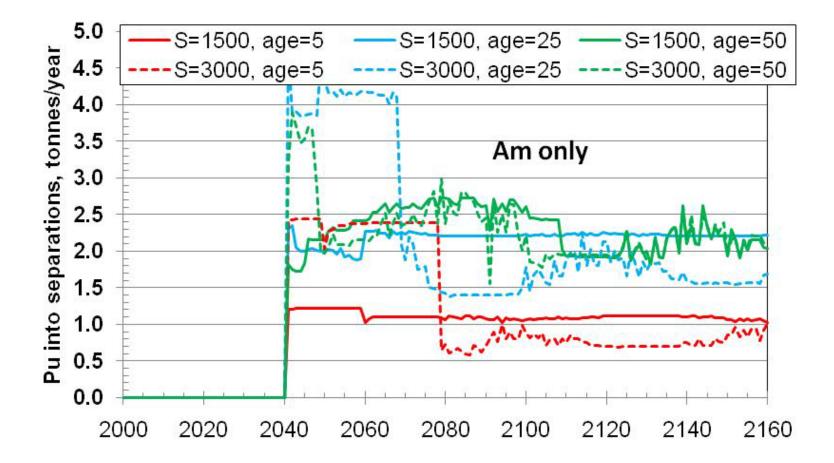

Dip in 2109 is when backlog worked off

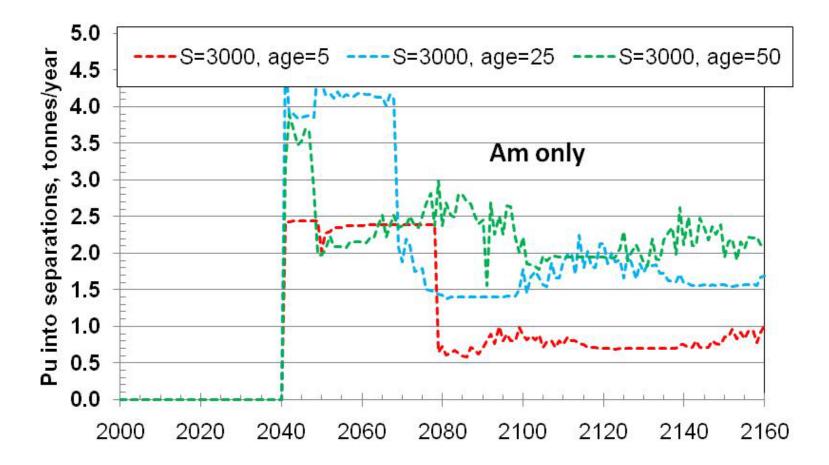

Dip in 2078 is when backlog worked off


Dip in 2068 is when backlog worked off

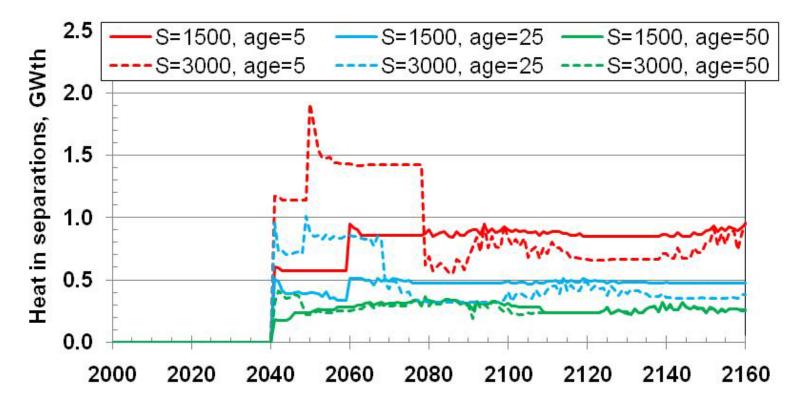


Dip in 2048 is when backlog worked off

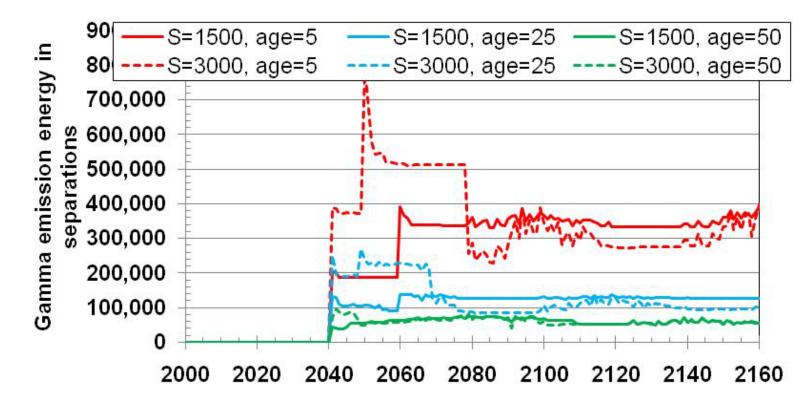




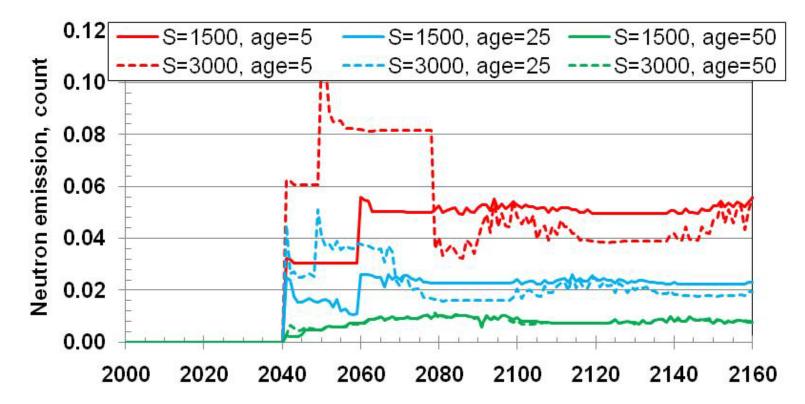
Phase 4 – Recycling rate (tonnes/yr) of PWR fuel



Phase 4 – Recycling rate (tonnes/yr) of PWR fuel

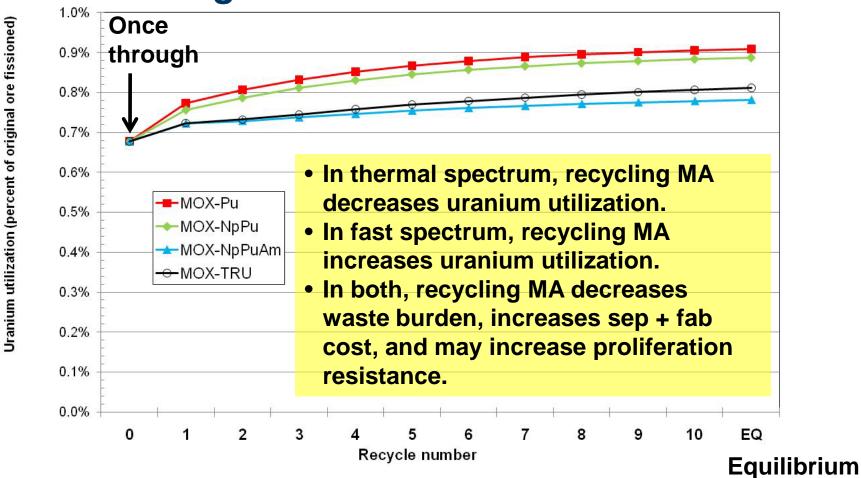


Phase 4 – Heat in separations (GWth) used fuel modeled as ¼ year in separations



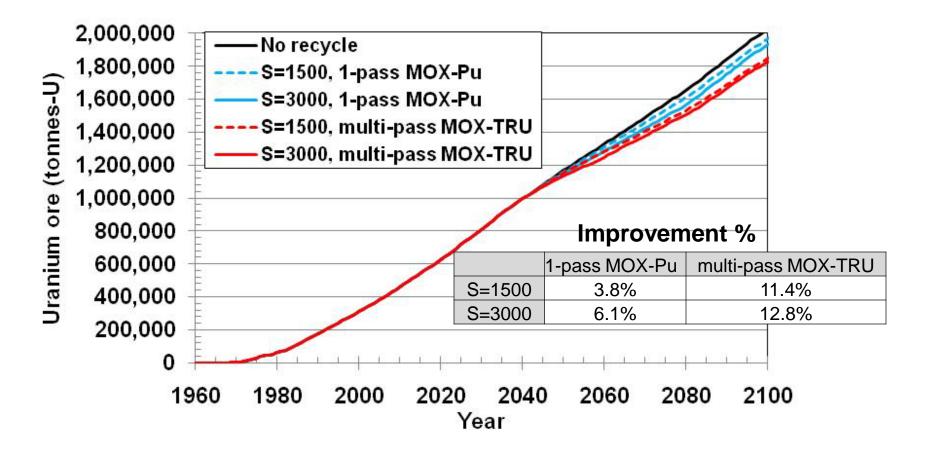
Phase 4 – Gamma energy in separations used fuel modeled as ¼ year in separations

Phase 4 – Neutrons emitted in separations used fuel modeled as ¼ year in separations

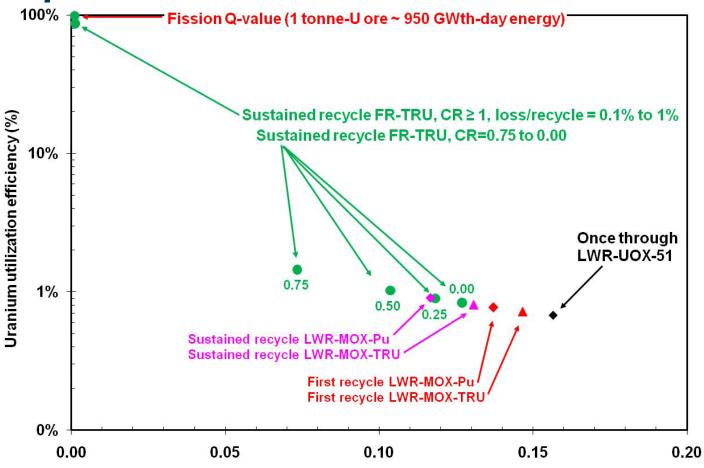


Phase 5 – Recycling + repository (no PWR UOX to repository)

- MOX-RU-Pu (1 recycle) same as phase 4
 - Used MOX goes to repository
- MOX-EU-TRU (indefinite recycles), burnup = 51 GWth-day/tonne
 - Recycles TRU (≤ 8% of fresh MOX, enrich U as needed)
 - Used MOX always recycled, never to repository
- Repository opens in 2030 at 1500 tonnes/year, infinite capacity
- Separation cases specified, both start in 2040, tonnes-iHM
 - 1500 tonnes/year backlog continues to grow
 - 3000 tonnes/year backlog eliminated in 2115
- Minimum aging before separation = 5 years
- Per spec, BWR fuel not recycled
- Isotopic data in spreadsheet



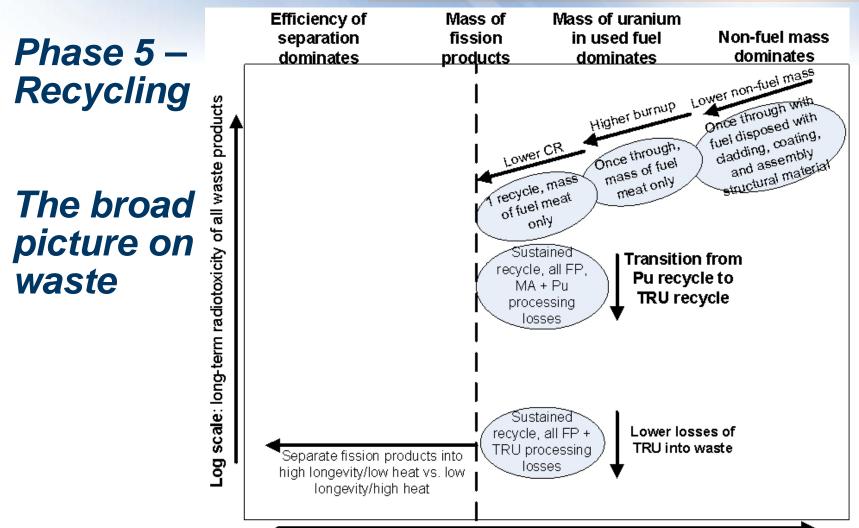
Repeated LWR recycle possible, modest uranium savings



Phase 5 – Recycling – uranium ore

Phase 5 – Recycling The broad picture on uranium

Heavy metal consumption rate (tonne of natural uranium HM/GWth-day)



Phase 5 – Recycling – waste mass (1000s of tonnes, 2030-2100)

PWR+BWR	Pu	MA	FP	U	Total
No recycle	2.2	0.4	10.7	196.7	210.0
1-pass MOX-Pu	1.5	0.4	10.7	59.8	72.3
Multi-pass MOX-TRU	0.6	0.1	10.7	60.0	71.5
Not necessarily high heat/ high longevity waste					
PWR only	Pu	MA	FP	U	Total
No recycle	1.5	0.3	7.4	133.6	142.7
1-pass MOX-Pu	1.0	0.3	7.4	10.6	19.2
Multi-pass MOX-TRU	0.0	0.0	7.4	0.0	7.4

Could have sent RU from UOX separation as waste, but didn't.

Log scale: disposed mass that has both high long-term radiotoxicity and high heat

Idaho National Laboratory

Conclusions

- Benchmarks and comparisons are tricky.
- Timing
 - Improvement of most metrics (uranium, waste, etc.) inhibited by delaying implementation and by increasing UNF cooling time (hence increasing time lag in recycling)
 - Improvement inhibited if only recycle PWR (not BWR)
 - Of course, more recycling may increase cost.
- Uranium use
 - MOX achieves minor uranium savings
 - Higher if multi-recycle
 - If uranium savings is the goal, use a breeder reactor
- Waste management
 - If waste mgt savings is the goal, keep recycling