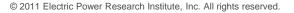


EPEI ELECTRIC POWER RESEARCH INSTITUTE

Extended Storage: Research Perspective

John Kessler


Manager, Used Fuel and High-Level Waste Management Program jkessler@epri.com; 704-595-2737 Co-authors: Andrew Sowder; Keith Waldrop

NWTRB Meeting Salt Lake City UT, 14 September 2011

Guiding Principles

- Disposal or reprocessing not likely for decades
- Current regulations: up to 120 years combined wet/dry - 60 years wet storage; 60 years dry storage
- Global interest: Not just a U.S. issue
- Storage systems will have to perform intended function beyond current licensing period

Technical bases for dry storage >60 years not yet demonstrated

Functions of Storage and Transportation Systems

- Thermal performance
- Radiological protection
- Confinement
- Sub-criticality
- Retrievability

Can existing and future systems maintain these storage and transportation functions for many more decades?

Temperature-related Dry Storage System Degradation Mechanisms

- Dry storage systems
 - Degradation of neutron shielding
 - Concrete dry-out and cracking
 - Corrosion
- System internals
 - Fuel cladding creep caused by increased cladding ductility and increased stress
 - Due to higher temperatures causing higher pressures inside the cladding
 - Hydride reorientation in the spent fuel cladding
 - Corrosion

Changes as the System gets Older and Cooler

- Mostly good things
 - Reduced metal creep rates
 - Reduced corrosion rates
 - Reduced gamma and neutron radiation
- Potential negatives
 - Cask systems
 - Canister stress corrosion cracking (particularly in marine environments)
 - Internals
 - Additional hydride precipitation
 - Decreased cladding ductility
 - Potentially more susceptible to breakage during storage and transportation

EPRI Extended Storage Collaboration Program (ESCP)

- Purpose: Provide the technical bases to ensure continued safe, long-term used fuel storage and future transportability.
- Modeled on prior dry storage license extension research
- Participants: EPRI, NWTRB, NRC, DOE, NEI, utilities, vendors, international
- Phased approach
 - Phase 1: Review current technical bases and conduct gap analysis for storage systems
 - Phase 2: Conduct experiments, field studies, and additional analyses to address gaps
 - Phase 3: Coordinate research that results in a program documenting the performance of a dry storage system loaded with high burnup fuel (>45 GWd/MTU)

Current ESCP Status

- Phase 1 gap analyses well under way
 - NWTRB analysis completed in 2010
 - Preliminary gap analyses presented by DOE and NRC
 - Summary of recent ESCP activity and gap analyses in EPRI report 1022914 (August 2011)
 - EPRI report available to the public at: http://my.epri.com/portal/server.pt?Abstract_id=00000000000001022914
- Three primary extended storage gaps identified in December 2010
 - Cladding integrity
 - Welded stainless steel canisters
 - Concrete

Confinement – The Number 1 Priority

- Three confinement barriers are considered
 - Primary barriers:
 - Bolted systems: seals and bolts
 - Significant R&D completed or underway (Germany and Japan)
 - Welded stainless steel systems: welded SS canister
 - External inspection a common desire
 - EPRI work on NDE tools ongoing
 - Secondary barrier: fuel cladding
 - Most cladding intact, but some is already degraded
 - Cladding integrity contributes to sub-criticality and retrievability

Criteria for Prioritization of R&D

• DOE preliminary criteria:

- 1. Whether existing data are sufficient to evaluate the degradation mechanism and its impact on an "important to safety" (ITS) SSC
- 2. The likelihood of occurrence of the degradation mechanism during extended storage
- 3. Ease of remediation of the degraded SSC such that it continues to provide it safety function
- 4. The significance of the potential consequences that may result from the degradation mechanism.

• EPRI preliminary criteria:

- 1. The importance to maintaining the safety functions with particular emphasis on the confinement safety function.
- 2. The amount of R&D that has already been completed.
- 3. Whether the data gap is the subject of significant, on-going research.
- 4. The ability to fairly easily detect, inspect, or mitigate degradation of the safety function(s) affected by the long-term process being considered.

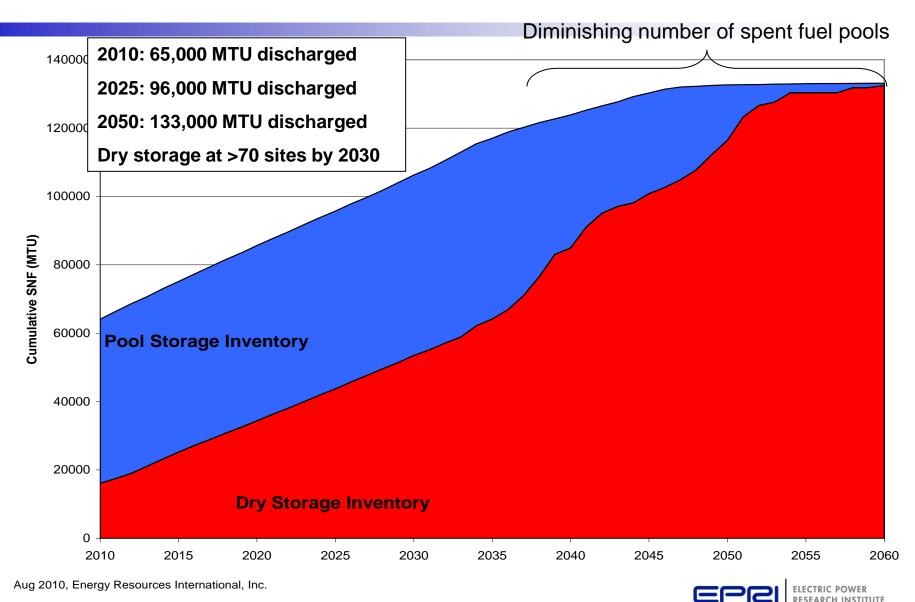
High Priority Gaps Requiring R&D

- Common high priority in the US: welded canister (primarily SS) degradation
 - Effect of marine environments: stress corrosion cracking (SCC)
- Other High Priority Items
 - DOE:
 - Delayed Hydrogen Cracking (DHC)
 - Bolted cask metallic seals and bolts corrosion
 - NRC: Bolted cask metallic seals
 - Outside the US: bolted cask metallic seals

Recommended ESCP Expert Groups Identified at May and June 2011 Meetings

- Fuel/Internals
- Confinement (Canister/Cask) Systems
 - Welded stainless steel canisters
 - Bolted cask seals and bolts (international lead)
- Bolted cask neutron shielding (international lead)
- Concrete Systems
- Demonstration Project

EPRI Near-Term Work on Welded SS Canisters: Develop NDE Tool(s) for In Situ Inspection


- Options for inspection of outside of canisters:
 - Visual
 - Weld cracking
- Develop tools for specific casks based on
 - Volunteer utility/utilities
 - Prefer coastal sites (marine environments)
 - Conditions that may support SCC
 - Time in storage
 - Sufficiently high relative humidity on canister surface
- Target timeline: inspection of one or two canisters by end of 2012

Thoughts on what the US Industry Wants from DOE (re Extended Storage)

Cumulative U.S. Commercial Spent Nuclear Fuel Inventories – 2010 to 2060 (assumes no nuclear expansion, 60-year life)

Extended Storage Aging Management R&D Needs – Near Term

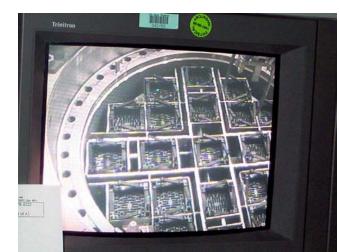
Maximize life of existing systems and ensure transportability:

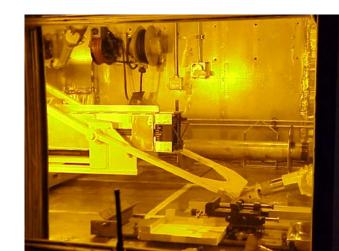
- Additional data and analyses of long-term degradation mechanisms (ESCP Program). Specific examples:
 - Hydride reorientation
 - Advanced cladding properties
 - -SS canister corrosion
- Develop regulatory framework for >60 years
- Enhanced monitoring and inspection

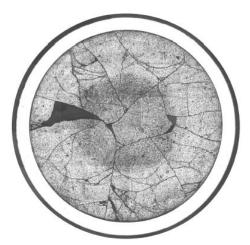
Extended Storage Aging Management R&D Needs – Intermediate and Long-Term

- Intermediate-term: Evaluate mitigation/design options
 - -e.g., anti-corrosion coatings; new cask designs
- Long-term: Develop risk-informed approach to extended storage
 - When does the worker and public dose risk of continued storage in existing systems exceed the economic and worker dose risk of transferring used fuel into a new system?
- Industry expects DOE to take the lead in all these areas – with appropriate industry collaboration

Thoughts on "Experimental Work": Two Areas of Research


- 1. Survey existing cask and pool systems
- Detailed inspections
- Take samples to inspect for degradation. Possibilities:
 - Concrete (cores?)
 - Canister gas
 - Keep monitoring CASTOR V cask at INL
 - SS corrosion investigation (focus of EPRI nearer-term work)
 - Pool liner leakage work?





"Experimental Work": Research Area #2

- 2. Dry cask storage confirmatory demo using high BU used fuel
- Same idea as was done in the '80s and early '90s using lower BU used fuel
 - Answer questions about high BU cask system and fuel behavior
- Obtain one or more casks licensed for high BU storage and transportation
- Pre-characterize "sister" rods
- Load with high BU used fuel at the upper limits of the license condition (highest BU, decay heat, source term allowed)
- Modify to allow for reopening and cavity gas and temperature sampling over many years
- After "several" years: reopen, take rods for destructive examination

EXAMPLE: Estimated Duration and Costs [\$M] for Confirmatory Program Options for High BU Fuel (from EPRI report 1007872, 2003)

Option A: Augment Existing Exam Program	Option B: Utility ISFSI Followed by Laboratory Examination	Option C: Laboratory Storage and Examination
5	12	12
1	4	4
0	~5	~7
>0	>0.2	>0.2
0.3	0.3	0.3 to >1
0	1.5	1.5
3	4 to 7	4 to 7
1	1	>1
~5	~15 to 20	~18 to 21
	Augment Existing Exam Program5100>00.3031	Augment Existing Exam ProgramUtility ISFSI Followed by Laboratory Examination512140~5>0>0.20.30.301.534 to 711

© 2011 Electric Power Research Institute, Inc. All rights reserved.

Problem: No Place Like the INL TAN Hot Cell Exists Any More

- DOE needs to provide capability lost due to TAN Hot Cell decommissioning
- Otherwise
 - The test will have to be done using a spent fuel pool
 - Potential changes in storage system (esp. used fuel) properties if rewetted
 - Or conduct a test using only a limited number of assemblies so the mini-cask can fit into an existing hot cell
 - Not ideal: can introduce experimental artifacts

Unknown: How Long Systems will Last or When DOE will Take Used Fuel

- DOE must develop, license and demonstrate one (or more) systems to repackage used fuel in lieu of pool availability
 - Full or partial repackaging
 - Must be a "dry" transfer system as spent fuel pools eventually become decommissioned
 - Overpackaging
 - Something else?
- Dry transfer system should be developed sooner rather than later to maintain confidence in long-term interim management of used fuel

Summary of What the Industry Wants from DOE - Specifics

- Provide the majority of the overall R&D funding, but remain collaborative
- Work with industry to continue to obtain high burnup used fuel properties and long-term behavior for transportation
- Provide a new facility like the decommissioned hot cell facility at INL to handle commercial full-size dry storage casks containing high burnup fuel for the confirmatory test(s)
 - Or wet or "mini-cask" approach
- Develop ownership transfer plan for used fuel used in experiments
- Must have a contingency plan
 - Develop, license, and demonstrate one or more used fuel transfer systems compatible with existing infrastructure

What Industry Wants from DOE - Processes

- DOE program should be oriented to support the timely movement of UNF off reactor sites
- Transparency and timeliness
 - DOE's plans and processes should be open for public comments
 - Release reports without delay
 - Prioritize R&D with licensing needs
 - DOE schedule should be cognizant of nearer-term license extension regulatory issues (high BU fuel?)
- DOE extended storage program should look for synergies with centralized interim storage
 - E.g., extended storage R&D co-located with centralized storage

Together...Shaping the Future of Electricity

