

Idaho Cleanup Project

Calcine Disposition Project

Presented To: U.S. Nuclear Waste Technical Review Board

Presented By: Joel Case Federal Project Director Calcine Disposition Project

January 9, 2012

Presentation Objectives

- Project Background
- Project Drivers
- Project Scope
- Current Status

Fuel Element Dissolution

Liquid

Tank Farm

INL Spent Fuel Reprocessing

Waste

Calcine

Solvent

Extraction

Uranium

Solid

Transport

Off-Site

Transport

G1422-03

3

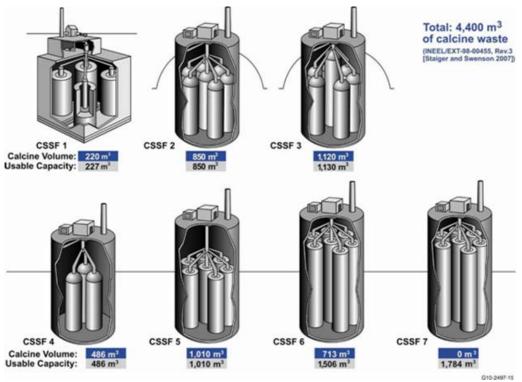
Product

Denitrator (Solidification)

Background - Calcine

Calcine is Solidified radioactive waste from Spent Fuel Reprocessing

- Converted the liquid high level waste into a granular solid using a thermal process referred to as calcination
- Resulted in a 7 to 1 volume reduction
- Calcine Properties
 - Mixed hazardous/high-level waste
 - Dry, friable powder that is dispersible and can be mobilized in both air and water
 - Stable noncorrosive form
- Regulated by the State of Idaho under its RCRA authority
 - Eight RCRA Metals
 - Arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver
 - Four RCRA Listed Waste Codes
 - F001 & F002 Spent halogenated solvents Reactors
 - F005 Non-halogenated solvents
 - U134 Unused hydrofluoric acid


Spent Fuel Storage

Spent Fuel

Calcine Storage Bins

Background - Calcine Solids Storage Facility (CSSF) Inventory

- Stored in 43 stainless steel bins
- Regulated under a 10year RCRA Part B
 Permit Issued November 2006
- Compliance is based on a State-approved exemption from RCRA double containment requirement that requires periodic State approval to remain valid.

Calcine Solids Storage Facility

U.S. Department of Energy Idaho Operations Office

Project Drivers

• Idaho Settlement Agreement milestones

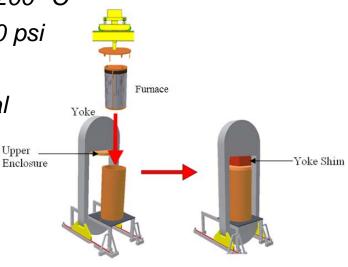
- Issue a Record of Decision (ROD) by December 31, 2009 to identify method to treat calcine (issued December 23, 2009, identified Hot Isostatic Press as calcine treatment process)
- Submit RCRA Part B Permit Application or Permit Modification Request for HIP process and calcine retrieval to the State of Idaho by December 1, 2012
 - May include SBW HIP processing schedule
- Calcine road ready for transport out of Idaho by December 31, 2035

Idaho Site Treatment Plan Milestones

- Submit project milestones by December 31, 2012

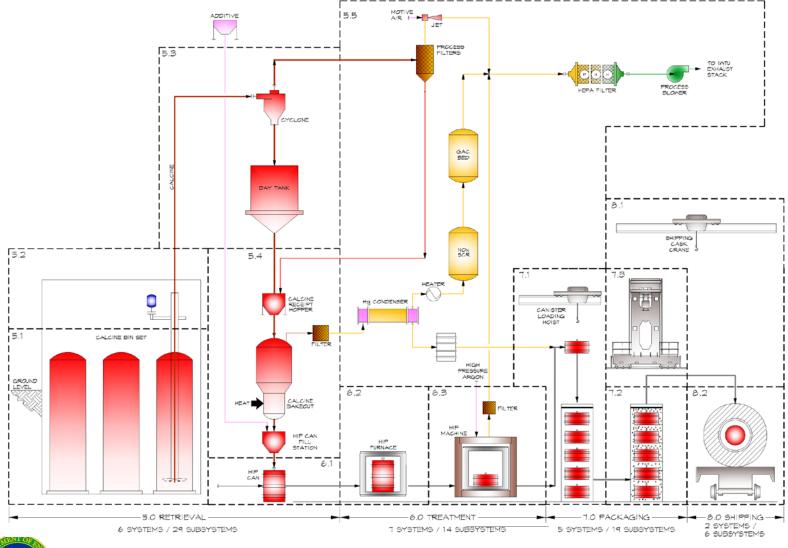
Calcine Disposition Project Scope

- Design and construct processing system using the Integrated Waste Treatment Unit (IWTU) facility to the maximum extent practical
- Retrieve calcine from bin sets and process using hot isostatic pressing (HIP) technology
 - 4,400 m³ (155,000 ft³) or 5.5 million kg (12.2 million lbs) of calcine
- Utilize Waste Acceptance System Requirements Document (WASRD) for Yucca Mountain
- Package treated waste form in canisters
- Ship off-site or place canisters in interim storage pending off-site shipment for disposition
- Current Project TPC cost range is \$0.9 B to \$2.0 B



Hot Isostatic Pressing

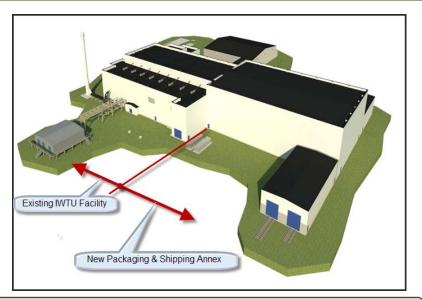
- HIP in commercial use since 1941
 - Commercial temperatures to 2,550 degrees C and pressures to 60,000 psi
- Technology consists of a pressure vessel containing an electrically heated furnace.
- Components are placed in a sealed can inside the furnace and isostatically pressed with argon gas to maximum density
- Temperature range for Calcine treatment 1,050-1,200 °C
- Pressure range for Calcine treatment 7,200-15,000 psi
- Produces glass-ceramic waste form
- Results in large life-cycle cost savings through final disposition
- Volume reduction expected to be 40% to 60%



Lab Scale HIP Can Testing Before and After (AVURE June 2011)

Process Overview

IWTU Facility



U.S. Department of Energy Idaho Operations Office

Facility Overview

- Fully utilizes existing IWTU PC-3 cells for HIP machines
- Re-uses the existing <u>IWTU canister</u> fill cells for HIP Can fill
- Calcine Surge (day) storage and bakeout cell within IWTU footprint
- Packaging and shipping located in new east annex

PERSPECTIVE VIEW OF EXISTING IWTU WITH EAST ANNEX

SECTION VIEW OF IWTU'S PROCESSING CELLS

Project Focus

- Project priority for FY2012 is activities leading to submission of RCRA Part B Permit Modification Requests (Calcine Retrieval & HIP Treatment Process) to State of Idaho by December 1, 2012
 - Conceptual Design
 - Technology maturation to support treatment process permit needs

- Advanced the CDP design
 - Completed Integrated Test Facility (ITF) technical and functional requirements
 - Revised System Design Descriptions (30%)
 - Developed supporting engineering files, drawings, and reports

Technology Development

- Commenced waste form testing
- Completed furnace (filter) testing and analysis
- Commenced HIP Can testing at Avure
- Awarded master contract for HIP Can profile testing (ANSTO and Bodycote)

Technology Risks & Technology Readiness Levels (TRL)

- System Engineering Per DOE G 413.3-1
- Technology Development Per DOE G 413.-4A
- DOE-HQ TRA Assessment of CDP Process June-July 2010
 - 11 Critical Technical Elements (CTE)
 - Testing currently underway to achieve TRL-4 for CD-1 Review
 - HCC Filter Testing recommended by TRA team to achieve TRL-4 is complete (Oct-2011)

Critical Technology Element (CTE)	TRA Evaluation (7/10)	Current TRL Level
Retrieval/Pneumatic Transfer System	4	4
Batching and Mixing System	4	4
Ceramic Additive Formulation (Waste Form)	3	3
Hot Isostatic Pressing HIP Can Design	3	3
Hot Isostatic Pressing HIP Can Confinement (HCC)	2	4
HIP Can Filling and Closure	4	4
Bakeout System	4	4
Canister Loading/Closure	4	4
Remote Operation and Maintenance	4	4
Characterization (feed, admixture, product)	4	4
Simulant Formulation	3	*3

Objectives for Waste Form Technology Development

- What defines "success" for a glass-ceramic waste form
 - Retention of radionuclides
 - Meet WASRD PCT requirements
 - Retention of RCRA hazardous metals
 - RCRA permitted disposition may not be available
 - WASRD states accepted waste forms shall not be subject to regulation as hazardous waste under RCRA
 - Meet RCRA LDR nonwastewater UTS
 - Allows RCRA delisting, if required
 - Support Designation of HIP treatment as BDAT for HLW Calcine
 - Provide data for BDAT rulemaking

Technical Readiness Approach – Waste Form

- Fiscal Year 2012
 - Demonstrate immobilization (mineralization) of RCRA constituents in glassceramic matrix
 - Develop individual formulations for the 3 general calcine types
 - Test at 100 g and 1 kg sample sizes
 - Successfully completed three CWI developed recipe tests
 - One recipe test met all requirements (ANN/SBW)
 - Two recipe tests met all requirements except TCLP for Cadmium

U.S. Department of Energy Idaho Operations Office

Recent Project Reviews

- Consortium for Risk Evaluation with Stakeholder Participation (CRESP) May 2011
 - Purpose carry out an independent technical review regarding the planned implementation of hot isostatic pressing (HIP) for treatment of calcine waste, and the potential for cold-crucible induction melting to be a back up treatment technology as a project risk reduction strategy
 - Conclusion HIP processing of calcine should be pursued and that vitrification to produce both a borosilicate glass or glass ceramic should be pursued as an alternative.
- Environmental Management -Technical Evaluation Group (EM-TEG) July 2011
 - Purpose determine the level of technology maturation development and if this would support a project CD-1, and identify project risk.
 - Conclusion the HIP process is the most attractive approach for processing INL calcine waste; however, identified two risks in regards to waste acceptance of the glass-ceramic waste form

Look Ahead FY12 – FY15

- Complete PMR Development and issue PMR as scheduled
- Continue waste-form testing
 - Demonstrate scale-up at 25-kg sample size
 - Develop a single formulation suitable for all calcine types
 - Initiate BDAT sample data collection
- Continue HIP can testing
- Complete furnace filter testing
- Integrated Test Facility (ITF) Test Design
 - Calcine & Additive Mixing System
 - Bake-Out System
 - Fill & Seal System
- Proposal to issue CD-1 on June 30, 2014 for approval by December 31, 2014
- Proposal to achieve TRL-4 for all critical technology elements by CD-1 submittal

