

Nuclear Energy

Modeling Used Fuel Storage Temperatures

Harold E. Adkins

Senior Research Engineer Fluid and Computational Engineering Pacific Northwest National Laboratory

Nuclear Waste Technical Review Board Idaho Falls, ID October 17, 2012

Thermal Model Development and Evaluation in Support of UFD Campaign

Nuclear Energy

Why is it of concern to the campaign?

- Gap Analysis identified thermal profiles as a High Priority, NRC gap analysis in agreement
- Ranked #1 in Gap Prioritization because almost all degradation mechanisms are dependent on temperature

Realistic, not overly conservative, temperature profiles are needed

 Industry typically uses conservative models (limited conduction and convection, and simplifying assumptions) to assure that peak cladding temperature is within technical specifications

Over estimated temperatures will (to name a few):

- Over predict amount of hydride reorientation and radiation damage annealing
- Under predict the onset of potential deliquescence on the canister surface

Thermal Model Development and Evaluation in Support of UFD Campaign

Nuclear Energy

Need accurate past, present, and future temperatures for clad and system components

- Especially critical for transportation, to know if we are at or below the ductile to brittle transition temperature during movement
- Hottest fuel that could facilitate hydride reorientation will be the last to cool to the DBTT
- Understanding temperature distribution throughout UF payload important to characterizing potential overall behavior characteristics

Nuclear Energy

Code Development:

- Early 1980's DOE/OCRWM initiated a search for an analysis tool for accurate thermal prediction of spent fuel storage systems, to determine
 - Peak fuel cladding temperature and assembly temperature distributions
 - Temperatures of system components related to safety (e.g., seals) to determine that they remained within design limits

Capability requirements were essentially "grand challenge" equivalent for CFD codes of the time, including

- Flow modeling within the fuel rod array
- Steady-state natural convection cooling within the package and on the external boundary
- Thermal radiation, which typically contributes over 20% of heat transfer within the package

Nuclear Energy

COBRA-SFS and HYDRA-II selected from a survey of existing codes, as best available starting point for a multi-phase effort to

- Calibrate the codes for flow and heat transfer with inert gas (including thermal radiation) within rod arrays
- Verify the implementation of the conservation equations (mass, energy, & momentum)
- Validate against data from full-scale systems

Initial verification performed by comparison to single-assembly experiments, including

- Single PWR Spent Fuel Assembly tests at PNNL (PNL-5571, 1986)
- Mitsubishi 15x15 PWR test assembly (Irino et al., 1986)
- BNFL 16x16 PWR test assembly (Fry et al., 1983)

OCRWM Validation of COBRA-SFS at INL (cycle 3 of COBRA-SFS released)

Nuclear Energy

Validation consisted of performing "blind" pre-test predictions and post-test analysis of experiments at the Idaho National Laboratory's Test Area North (TAN) facility

Over 78 "blind" test analyses were performed, including

- Transnuclear TN24P (EPRI NP-5128 and PNL-5777 (Vol. I)), loaded with 24 spent fuel assemblies
- Pacific Sierra Nuclear Associates' Ventilated Concrete Cask (VCC) with Multi-Assembly Sealed Basket (MSB), loaded with 17 canisters containing consolidated spent fuel rods from 15x15 assemblies
- Ridihalgh, Eggers, and Associates' REA 2023 storage cask for BWR spent fuel

Nuclear Energy

COBRA-SFS Validation:

Summary of COBRA-SFS V&V Analyses

- Single assembly (electrically heated) tests
 - EMAD Single Assembly (15x15) tests Unterzuber, 1981
 - SAHTT (15x15 PWR assembly tests at PNNL) PNL-5571, 1986
 - Mitsubishi 15x15 PWR test assembly Irino et al., 1986
 - BNFL 16x16 PWR test assembly Fry et al., 1983
- Multi-Assembly tests (with spent fuel)
 - CASTOR-V/21 (loaded with 21 PWR spent fuel assemblies from Surry) EPRI NP-4887, 1980
 - REA 2023 cask (52 BWR spent fuel assemblies) PNL-5777 (Vol. I), 1986
 - Transnuclear TN24P loaded with 24 spent fuel assemblies (from Turkey Point)
 EPRI NP-5128, 1987 and EPRI NP-6191, 1987
 - Pacific Sierra Nuclear Associates Ventilated Concrete Cask (VCC) with Multiassembly Sealed Basket (MSB), loaded with 17 canisters of consolidated rods from 15x15 assemblies – TR-100305 (EPRI), 1992.

Nuclear Energy

Sample Results of COBRA-SFS V&V for Multi-Assembly Storage

Figure 5-29. Post-Test Horizontal, Helium, Nitrogen, and Vacuum Radial Temperature Profile Predictions Compared to Test Data at Peak Temperature Axial Locations

Nuclear Energy

Sample Results of COBRA-SFS V&V for Multi-Assembly Storage

October 2012

Figure 5-20. Post-Test Vertical, Helium Axial Temperature Profile Predictions Compared to Test Data

Temperature, °C

Nuclear Energy

From Validation to Application:

DOE funded review by NRC of the COBRA-SFS code

- NRC subcontracted a team of national experts to review the code for use in predicting thermal performance of spent fuel storage/transportation systems
- NRC establishes contract with PNNL to perform confirmatory analyses and review of applicant submittals (case work)
- PNNL applies many other analytical codes, methodologies, correlation developments, however, all are verified via direct comparison back COBRA-SFS validation work
 - Application of codes such as FLUENT, STAR-CD, STAR-CCM+, ANSYS, etc.
 - Calibration of effective thermal conductivity (Keff) correlations for UF
 - Correlations for enhanced Keff via pressurization of He in UF payload region

Additional codes beyond COBRA-SFS necessary as:

- Existing general purpose commercial codes are already in use by trained users
- COBRA-SFS requires seasoned operator and lacks pre- and post- GUI

October 2012

Nuclear Energy

Previous Applications:

- Duke power NUHOMS module relicensing support initiative
- EPRI funded dual purpose NAC cask performance evaluation
- Wire-wrap fuel feasibility evaluation for FFTF core
- Hanford Canister Storage Building
- Spent Fuel Pool analyses with postulated Zr fire
- Skull Valley Contention "H" rebuttal model of field of Ventilated Vertical Concrete Storage Casks

Nuclear Energy

Recent and Current Applications:

- Numerous confirmatory analyses of Applicant's proposed Storage, Transfer, and Transport systems performed for NRC
 - Normal and Hypothetical Accident Conditions

Extra regulatory fire evaluations

- Baltimore Tunnel Fire
- Caldecott Tunnel Fire
- MacArthur Maze Fire/Collapse
- Newhall Pass Fire

Our Present UFD Campaign Goals and Objectives

Nuclear Energy

- Need to validate predictive tools for high burnup fuel and newer, higher capacity Dry Cask Storage Systems
- NRC asking Industry for inspections to support license renewal
- DOE teaming with EPRI (including supplying funding for future inspections)
- Pre-test and post-test thermal predictions performed on Calvert Cliffs Nuclear Power Station

Nuclear Energy

Objectives:

- Determine Storage System (Module, Canister, and Fuel Assembly) Component Temperatures
- Demonstrate "State of the Art" Evaluation Capability & Analytical Practices
- Perform Partial Verification (via comparison to measured canister temperature data to be gathered by Calvert Cliffs)

Nuclear Energy

Thermal Predictions of HSM1 & HSM15 at Calvert Cliffs NPS

Calvert Cliffs Nuclear Power Station

Independent Spent Fuel Storage Installation (ISFSI)

Nuclear Energy

Calvert Cliffs Site Specific NUHOMS Storage Module

Module front vent and doorway¹

¹Ref. 'Jones 2010.ppt', Calvert Cliffs Dry Fuel Storage and Industry Lessons Learned ²SolidWorks[®] model provided by EPRI

SolidWorks® Model²

Nuclear Energy

DSC Details Extracted from MCNP Model and SolidWorks®

Ref. MCNP input model for DSC and transfer cask provided by John Massari, Calvert Cliffs

Nuclear Energy

Solid Model Primitives Transformed into STAR-CCM+[®] CFD Model and solved for HSM1 & HSM15 Temperature Distributions

- 43 separate regions connected by 117 interface boundaries
- SST (Menter) K-Omega Turbulence Model
- Flexible (all-y+) treatment for wall boundary conditions
- Default turbulent Prandtl #
- Default parameters in general
- 21,536,624 cells
- 127,598,563 faces
- 106,295,728 vertices

Nuclear Energy

Nuclear Energy

How did pre-test predictions compare with collected data?

	Temperature (°F (°C))				
		TC			
	TC measurement	measurement	CFD Model	CFD Model	
Temperature Location	HSM-1	HSM-15	HSM-1	HSM-15	
Under Grapple Ring	112 (44)	124 (51)	100 (38)	110 (43)	
Side $(0^{\circ}) - 0.0$ in. (0.0 m)	108 (42)	n/a	100 (38)	110 (43)	
Side $(0^{\circ}) - 20$ in. (0.51 m)	109 (43)	n/a	116 (47)	133 (56)	
Side (0°) – 40 in. (1.02 m)	108 (42)	n/a	136 (58)	164 (73)	
Top $(90^{\circ}) - 0.0$ in. (0.0 m)	115 (46)	n/a	103 (39)	114 (46)	
Top (90°) – 20 in. (0.51 m)	117 (47)	n/a	142 (61)	180 (82)	
Top (90°) – 40 in. (1.02 m)	119 (48)	n/a	178 (81)	242 (117)	
Side $(180^\circ) - 0.0$ in. (0.0 m)	104 (40)	n/a	100 (38)	110 (43)	
Side (180°) – 20 in. (0.51 m)	105 (41)	n/a	115 (46)	135 (57)	
Side (180°) – 40 in. (1.02 m)	108 (42)	n/a	134 (57)	167 (75)	
Rail (240°) – 0.0 in. (0.0 m)	106 (41)	n/a	97 (36)	104 (40)	
Rail (240°) – 20 in. (0.51 m)	107 (42)	n/a	101 (38)	112 (44)	
Rail (240°) – 40 in. (1.02 m)	108 (42)	n/a	109 (43)	123 (51)	
Rail (300°) – 0.0 in. (0.0 m)	105 (41)	n/a	97 (36)	104 (40)	
Rail (300°) – 20 in. (0.51 m)	106 (41)	n/a	101 (38)	111 (44)	
Rail (300°) – 40 in. (1.02 m)	106 (41)	n/a	109 (43)	122 (50)	

Reasons for differences:

- Ambient 82°F (28°C) instead of seasonal average of 58°F (14°C)
- Canister end temperatures highly sensitive to fuel location and degree of contact
- Anomalous temperature data collected past 0.0 m insertion (measurement difficulties)
- Protective vent screens with smaller grids than modeled (larger pressure drop)

Nuclear Energy

Taking these things into account, how do we compare?

	Temperature (°F (°C))				
	TC	TC	HSM-1	HSM-15	
	measurement	measurement	Model	Model	
Temperature Location	HSM-1	HSM-15	(post-test)	(post-test)	
Under Grapple Ring	112 (44)	124 (51)	113 (45)	127 (53)	
Side $(0^{\circ}) - 0.0$ inches	108 (42)	n/a	113 (45)	127 (53)	
Top $(90^\circ) - 0.0$ inches	115 (46)	n/a	116 (47)	133 (56)	
Side $(180^\circ) - 0.0$ inches	104 (40)	n/a	113 (45)	128 (53)	
Rail $(240^\circ) - 0.0$ inches	106 (41)	n/a	107 (42)	118 (48)	
Rail $(300^\circ) - 0.0$ inches	105 (41)	n/a	107 (42)	118 (48)	

Remaining reason for differences:

• Module door removed 40 minutes prior to taking outside measurements

Maximum component temperatures from CFD Models:

	Concrete	DSC	Fuel	Heat Shield
	temperature	temperature	temperature	temperature
	(°F (°C))	(°F (°C))	(°F (°C))	(°F (°C))
HSM-1 (Pre-test)	128 (53)	197 (92)	265 (129)	134 (57)
HSM-1 (Post-test)	133 (56)	208 (98)	279 (137)	143 (62)
HSM-15 (Pre-test)	145 (63)	278 (137)	402 (206)	166 (74)
HSM-15 (Post-test)	158 (70)	290 (143)	422 (217)	187 (86)

Nuclear Energy

Axial Temperature Comparison for Top Heat Shield, Air Above DSC, and DSC Top Surface in HSM-1

Planned UFD Work

Nuclear Energy

- Two EPRI inspections planned during FY13
- Sensitivity/Uncertainty analyses will be performed to identify important parameters to focus research efforts
- Extend CFD code validation
- Work with industry (demo) to validate codes during vacuum drying of HBU fuel under prototypic conditions
- Current codes can be extended from storage and transportation to disposal
 - Hanford CSB as an example

Nuclear Energy

Questions?

COBRA-SFS modeling of Canister Storage Building

Nuclear Energy

- Project W-464, IHLW Interim Storage Detailed Design (client: MacTec / CH2M Hill Hanford Group)
- Design-basis calculations for 150 kW heat load in Vault #2 of Canister Storage Building (CSB)
- Objective was to determine temperature distributions and magnitude and location of peak temperatures in
 - IHLW glass,
 - stainless steel canisters,
 - steel storage tubes,
 - concrete walls of vault, and
 - circulating air within vault

Evaluated maximum heat load (150 kW) and low-heat load startup conditions

Canister Storage Building Model

Nuclear Energy

Vault #2 description:

- Triangular array of storage tubes, with up to 2 stacked canisters containing highlevel waste glass per tube (up to 0.6 kW/canister)
- Cooled by natural circulation of air through underground concrete vault

COBRA-SFS model:

- Detailed representation of canisters and flow paths through 'forest' of storage tubes
- Detailed representation of vault walls, storage tubes, canisters, and canister contents (glass)

CSB Model Details

Nuclear Energy

Example of noding detail for solid conduction nodes (blue) and flow paths (red)

October 2012

COBRA-SFS V&V References

Nuclear Energy

- Bates, JM, 1986. Single PWR Spent Fuel Assembly Heat Transfer Data for Computer Code Evaluations, PNL-5571, Pacific Northwest Laboratory, Richland, Washington.
- Irino, M., M. Oohashi, T. Irie, and T. Nishikawa, 1986. Study on Surface Temperatures of Fuel Pins in Spent Fuel Dry Shipping/Storage Casks, IAEA-SM-286/139P. pp/ 585-598.
- Fry, CJ, E. Livesey, and GT Spiller, 1983. Heat Transfer in a Dry, Horizontal LWR Spent Fuel Assembly, New Orleans, Louisiana. Oak Ridge National Laboratory, Oak Ridge, Tennessee. Packaging and Transportation of Radioactive Materials Symposium (PATRAM83), in Proceedings of Seventh International Symposium.
- Creer, J.M., R.A. McCann, M.A. McKinnon, J.E. Tanner, E.R. Gilbert, R.L. Goodman, C. Dziadosz, E.V. Moore, D.H. Schoonan, M. Jensen, and C. Mullen. 1986. *The CASTOR-V/21 PWR Spent Fuel Storage Cask: Testing and Analysis.* EPRI NP-4887, Electric Power Research Institute, Palo Alto, CA.
- Creer, J.M., T.E. Michener, M.A. McKinnon, J.E. Tanner, E.R. Gilbert, and R.L. Goodman, 1987. The TN-24P PWR Spent Fuel Storage Cask: Testing and Analyses, EPRI-NP-5128/PNL-6054, Electric Power Research Institute, Palo Alto, CA.
- McKinnon, M.A., J.W. Doman, J.E. Tanner, R.J. Guenther, J.M. Creer, and C.E. King, 1986. BWR Spent Fuel Storage Cask Performance Test; Volume I: Cask Handling Experience and Decay Heat, Heat Transfer, and Shielding Data. PNL-5577, Vol. I, Pacific Northwest Laboratory, Richland, WA. (Note: cask is REA 2023)
- McKinnon, M.A., L.E. Wiles, N.J. Lombardo, C.M. Heeb, U.P. Jenquin, T.E. Michener, C.L. Wheeler, J.M. Creer, and R.A. McCann, 1986. BWR Spent Fuel Storage Cask Performance Test; Volume II: Pre- and Post-Test Decay Heat, Heat Transfer, and Shielding Analyses. PNL-5577, Vol. II, Pacific Northwest Laboratory, Richland, WA. (Note: cask is REA 2023)
- McKinnon, M.A., T.E. Michener, M.F. Jensen, and G.R. Goodman, 1989. The 24P PWR Spent Fuel Dry Storage Cask Loaded with Consolidated Fuel. EPRI-NP-6191/PNL-6631/UC-85, Electric Power Research Institute, Palo Alto, CA.

COBRA-SFS V&V References

Nuclear Energy

- McKinnon, M.A., R.E. Dodge, R.C. Schmitt, L.E. Eslinger, and G. Dineen, 1992. Performance Testing and Analyses of the VSC-17 Ventilated Concrete Cask. EPRI-TR-100305/PNL-7839, Electric Power Research Institute, Palo Alto, CA.
- Rector, D.R., R.A. McCann, U.P. Jenquin, C.M. Heeb, J.M. Creer, and C.L. Wheeler, 1986. CASTOR-1C Spent Fuel Storage Cask Decay Heat, Heat Transfer, and Shielding Analyses. PNL-5974, Pacific Northwest Laboratory, Richland, WA.
- Lombardo, N.J., T.E. Michener, C.L. Wheeler, and D.R. Rector, 1986. *COBRA-SFS Predictions of Single-Assembly Spent Fuel Heat Transfer Data*. PNL-5781, Pacific Northwest National Laboratory, Richland, WA.
- Cuta, J.M., D.R. Rector, and J.M. Creer, 1984. Comparisons of COBRA-SFS Calculations with Data from Simulated Sections of Unconsolidated and Consolidated BWR Spent Fuel. EPRI-NP-3764, Electric Power Research Institute, Palo Alto, CA.
- Lombardo, N.J., J.M. Cuta, T.E. Michener, D.R. Rector, and C.L. Wheeler, 1986. COBRA-SFS: A Thermal-Hydraulic Analysis Computer Code: Volume III: Validation Assessments. PNL-6049, Vol. 3, Pacific Northwest National Laboratory, Richland, WA.
- Rector, D.R., J.M. Cuta, and N.J. Lombardo, 1986. COBRA-SFS Thermal-Hydraulic Analyses of the CASTOR-1C and REA 2023 BWR Storage Casks Containing Consolidated Spent Fuel. PNL-5802, Pacific Northwest National Laboratory, Richland, WA.
- Rector, D.R., T.E. Michener, and J.M. Cuta, 1998. Verification and Validation of COBRA-SFS Transient Analysis Capability. PNNL-11883, Pacific Northwest National Laboratory, Richland, WA.
- Rector, D.R., T.E. Michener, 1989. COBRA-SFS Modifications and Cask Model Optimization. PNL-6706, Pacific Northwest Laboratory, Richland, WA.
- Wheeler, C.L., R.A. McCann, N.J. Lombardo, D.R. Rector, and T.E. Michener, 1986. HYDRA and COBRA-SFS Temperature Calculations for CASTOR-1C, REA-2023, CASTOR-V/21, and TN-24P Casks. In Proceedings, Third International Spent Fuel Storage Technology Symposium and Workshop, Vol. 1, S77-S98, CONF-960417, National Technical Information Service, Springfield, Virginia.