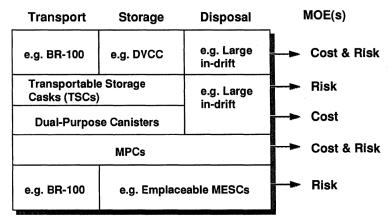


Nuclear Energy

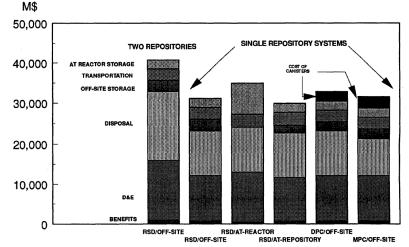
Fuel Cycle Technologies

System Architecture Evaluation

Mark Nutt, Argonne National Laboratory Deputy National Technical Director DOE-NE Used Fuel Disposition Campaign


Presented to: Nuclear Waste Technical Review Board Idaho Falls, Idaho 17 October 2012

Motivation


Nuclear Energy

- In the 1990s the U.S. DOE completed a number of systems analyses investigating consolidated interim storage as part of the waste management solution
- These analyses are "dated" and conditions have changed
 - Utility evolution and progress loading dry storage systems
 - Consideration of different geologic disposal environments
- Need to update back-end system architecture studies
- Need to update tools for evaluating the backend of the fuel cycle
- Need recognized by both the NWTRB and the BRC

DVCC - Dry Vertical Concrete Cask

COMPARING ARCHITECTURES(3K MTU/YR STARTING 1998)

TRW Environmental Safety Systems Inc., System Architecture Study, A0000000-01717-6700-00003 Rev. 0, July 26, 1994

MESC - Multiple Element Storage Canister

Considerations for a Future UNF Management System

Nuclear Energy

Direct disposal of dual-purpose canisters (DPCs) is highly uncertain

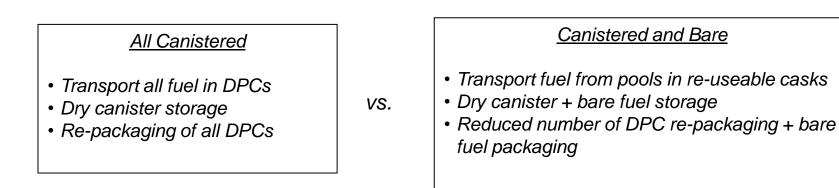
- Feasibility would have to be demonstrated and suitable site identified/selected
- Re-packaging of DPCs will be required if direct disposal is not feasible
- Multi-year feasibility evaluation required; initiated in FY12
 - Complex problem (recall, YM did not accept DPCs for direct disposal)

Implementation of standardized canisters

- Could have system-level benefit, depending on when deployed
- Uncertainty regarding standard canister size; repository media unknown
- Still would have to manage legacy DPCs
- Multi-year evaluation/implementation required; initiated in FY12

Legacy and continued use of dual purpose canisters (and single purpose storage casks) must be managed

- Wide range of systems in use (vertical, horizontal; ~ 30 different vendors/designs)
- Inventory and mix (vertical/horizontal) depends on start date of UNF acceptance and acceptance rate
- Influences future storage facility design
- Affects magnitude of future re-packaging



Considerations for a Future UNF Management System

Nuclear Energy

Central Storage Facility (CSF) concepts can differ, depending on UNF management approach taken

- Start dates of CSF and repository
- Acceptance and disposal rate
- Fuel receipt canisters, bare fuel
- Storage method dry (vertical/horizontal canisters, vaults); bare fuel storage (pools)
- Imposed capacity limits of facility
- Strategy for managing UNF in fuel pools once CSF begins operation will affect CSF design and future waste packaging/re-packaging

Objectives of the UFD System Architecture Effort

Nuclear Energy

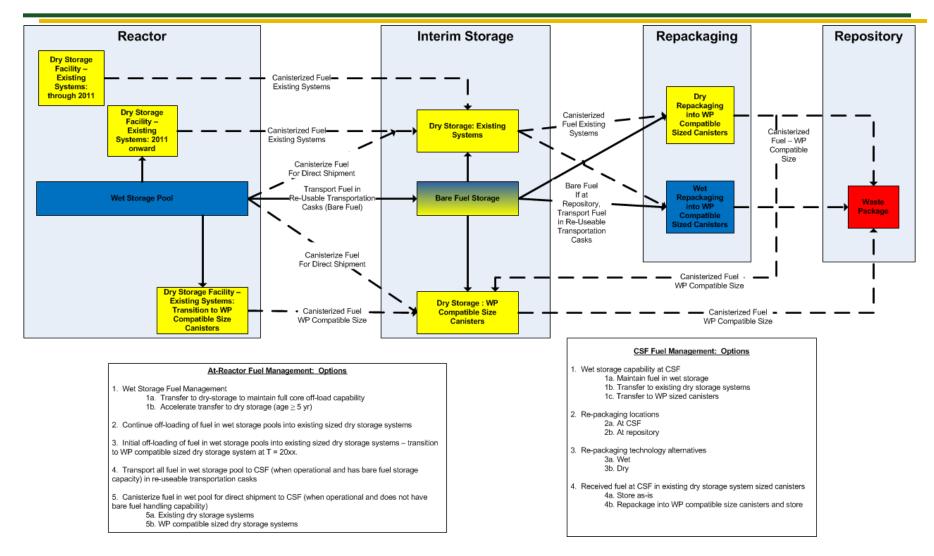
- Provide quantitative information with respect to the broad UNF management considerations
- Develop an integrated approach to evaluating storage, transportation, and disposal options, with emphasis on flexibility
- Evaluate impacts of storage choices on disposal options
- Identify alternative strategies and evaluate with respect to cost and flexibility
- Considerations include repository emplacement capability, thermal constraints, repackaging needs, storage and transportation alternatives, impacts on utility operations, etc.

Overview of FY12 Activities

Nuclear Energy

- Developed framework of potential UNF disposition pathways from atreactor storage (wet → dry) through interim storage to ultimate disposal
 - Assuming that canisters will need to be re-packaged into disposal canisters
- Selected disposition pathways for evaluation in FY12
- Determined evaluation assumptions, boundary conditions, and system inputs (acceptance rates, start dates)
- Developed UFD Transportation Storage Logistics (TSL) simulation tool from legacy codes (CALVIN and TOM)
- Conducted UNF logistic evaluations of selected disposition pathways
- Developed modular design concepts for Centralized Storage Facilities (CSF) and packaging/re-packaging plant
- Utilized logistic simulation results and modular design concepts to lay out facilities needed for each case evaluated

Objective of FY12 Activities:


1) Develop methodologies, approaches, and tools (Capability Development)

2) Evaluate select UNF disposition scenarios (Capability Demonstration)

Disposition Pathway Overview

Nuclear Energy

Disposition Pathway Evaluation

Nuclear Energy

Identified 9 potential disposition cases (and minor variants) that consider

- At-reactor UNF management
 - Transport all UNF in canisters or transport bare fuel in pools in re-useable transportation casks
 - Transition to loading disposable canisters at-reactor
- Packaging/Re-Packaging
 - At CSF or at repository
 - Upon receipt at CSF or upon shipment to the repository

Selected disposition cases for evaluation in FY12

- At-reactor UNF management
 - Transport all UNF in large canisters or transport bare fuel in pools in re-useable transportation casks
- Packaging/Re-Packaging
 - At CSF or at repository
 - Upon shipment to the repository

Down-select considered commonality of capability requirements, level of complexity, and flexibility

Assumptions and Input / Boundary Conditions

Nuclear Energy

Assumptions

- Disposition of Used LWR Fuel in a Once-Through Fuel Cycle
- Reactor fleet is limited to the current 104 operating reactors
- Reactors will receive life extensions to operate for 60 years
- Projected fuel inventory at reactor; wet and dry
- Oldest-Fuel-First (OFF) allocation priority (determines which sites ship in a given year)
- Youngest-Fuel-First (YFF) shipment from reactors (*determines which fuel is shipped from each site*)
- First-In-First-Out (FIFO) shipment from storage facility
- Reactors complete off-load of pools to dry storage 5 years after shutdown

Input/Boundary Conditions

- Single CSF and geologic repository
- CSF/geologic repository available: 2020/2040, 2020/2055, 2035/2055
- Geologic repository available: 2040, 2055
- Acceptance rates: 1500, 3000, 6000 MT/yr
- Waste package sizes: 4/9, 12/21, 21/44 PWR/BWR assembly capacity
 - Covers range of disposal concepts under consideration by UFD to date; feasibility of direct disposal of large DPCs are part of ongoing investigations

Did not evaluate all combinations in FY12

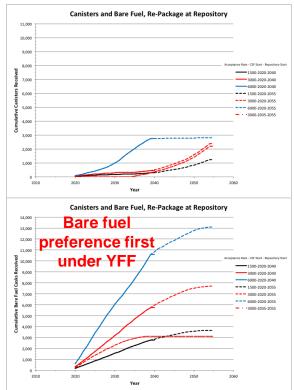
Logistics Modeling

Nuclear Energy

- Utilized the UFD Transportation Storage Logistics (TSL) simulation tool to evaluate the cases and input/boundary conditions
 - Modified and coupled two existing software tools
 - <u>Civilian Radioactive Waste Management Analysis and Logistics Visually INteractive Model (CALVIN)</u>
 - <u>Transportation Operations Model (TOM)</u>
 - Fuel discharge projection revised based on 2011 EIA forecast
 - Everything is projection forward from 2002 (last RW-859 data)

TSL tracks individual fuel assemblies through their disposition pathway

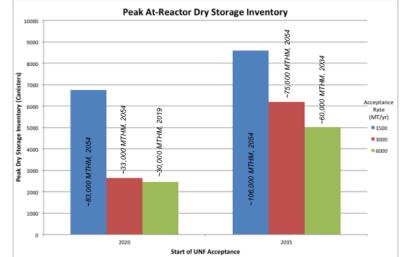
- Used fuel pool \rightarrow dry storage casks (by reactor, vendor model, size)
- At-Reactor Storage \rightarrow storage at a Consolidated Storage Facility (CSF)
- CSF \rightarrow repository
- Packaging/Re-packaging into disposal canisters
- Logistics results used to establish requirements for UNF management facilities (storage, packaging, re-packaging)
- End state: Production of Disposal Canisters


	4-PWR/9-BWR	12-PWR/24-BWR	21-PWR/44-BWR
PWR Waste Packages	52,250	17,417	9,952
BWR Waste Packages	<u>30,333</u>	<u>11,375</u>	6,205
Total Waste Packages	82,583	28,792	16,157

Nuclear Energy

(Preliminary Results)

- Higher throughput rates lead to larger facilities
 - 1500 MT/yr: smaller storage and re-packaging facilities; larger/longer at-reactor storage
 - 3000 MT/yr: larger storage and re-packaging facilities; smaller/reduced at-reactor storage
 - 6000 MT/yr: large storage and re-packaging facilities; marginally smaller/small additional reduction in at-reactor storage
- UNF acceptance priority (i.e., OFF, YFF), acceptance start date, acceptance rate, and UNF management strategy will impact the overall UNF management system, facility design concepts, and facility configuration
 - At-reactor UNF management and shipment defines the "boundary condition" to which the system will "respond"
 - Lower the acceptance rates or delay in start of acceptance "hardens" this "boundary condition," resulting in reduced flexibility later
 - More UNF will be placed in at-reactor dry canister storage system
 - Affects timing of downstream receipts (arrival of canisters, and bare fuel casks if included)



Nuclear Energy

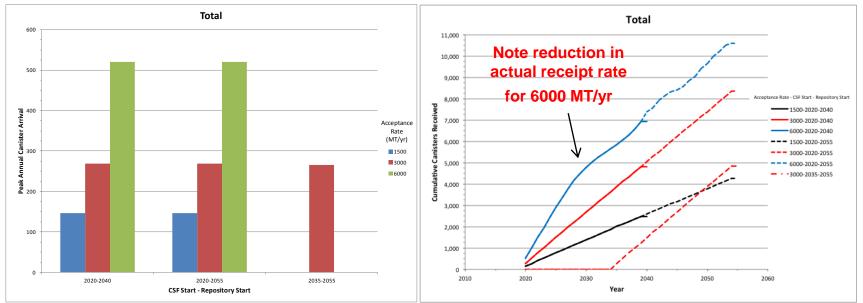
(Preliminary Results)

Start of acceptance and the acceptance rate will impact on-site dry storage requirements

- Significant decrease between 1500 MT/yr and 3000 MT/yr acceptance rate; reduced decrease between 3000 MT/yr and 6000 MT/yr
- Higher acceptance rates may not eliminate need for additional on-site dry storage when reactor fleet begins to shut down unless acceptance is "managed"
 - YFF still requires additional dry storage when reactors shut down
 - Straight OFF would require additional on-site dry storage

Alternate strategies for acceptance from reactors and subsequent shipment to a repository may also allow for optimization of down-stream facilities

- FIFO from CSF to repository is an initial assumption that may not be how the system is operated
- Treat consolidated storage facility as an integrated UNF management facility to act as a buffer between at-reactor UNF management needs and future repository requirements
 - · Optimize shipments from reactors to minimize additional on-site dry storage requirements
 - Optimize shipments from the CSF to the repository to meet repository requirements while minimizing processing facility requirements
- May require additional CSF storage capacity
- Additional evaluation needed

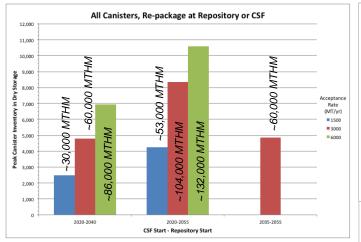

Nuclear Energy

(Preliminary Results)

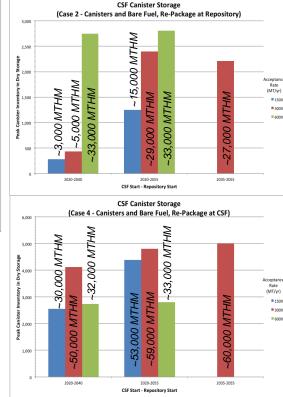
- Processing rates and inventories scale with UNF throughput rate
- High acceptance rates (i.e., 6000 MT/yr) lead to large facilities and supporting infrastructure
 - Large capacity storage facilities
 - High processing capability that may only be needed for a relatively short time; under-utilized facilities
 - Available fuel transported relatively quickly rate then matches discharge

Peak CSF Canister Receipt Rate All Canisters, Re-Package at Repository

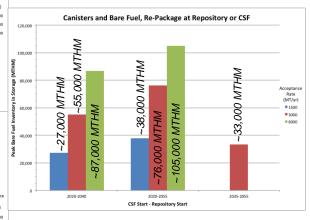
Cumulative CSF Canister Receipt All Canisters, Re-Package at Repository



Nuclear Waste Technical Review Board, October 17, 2012



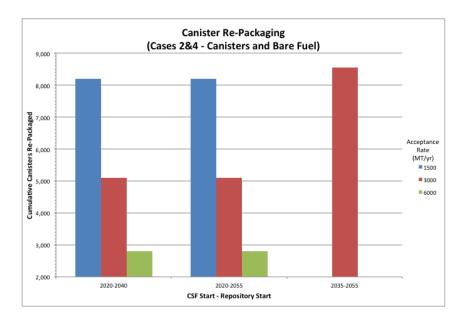
Insights Gained from Logistics Modeling (Preliminary Results)


Nuclear Energy

- Dry storage at a CSF will be required for dry storage systems loaded at-reactor
- Acceptance rate and duration between start of CSF and repository operations affects storage capacity requirements
 - Any additional decay storage would increase requirements

NOTE : SCALE IS DIFFERENT ON CHARTS

Maintaining bare UNF can reduce canister storage at a CSF


 Trade-off is bare fuel storage

Nuclear Energy

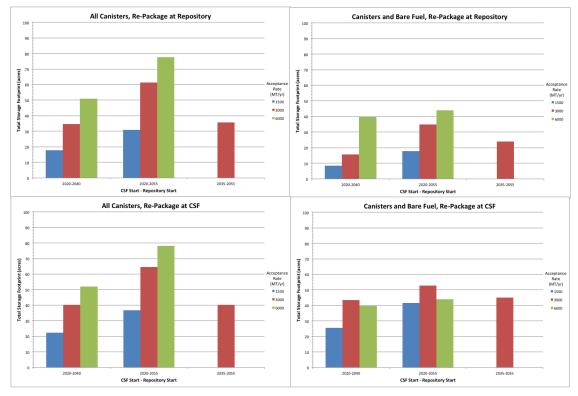
(Preliminary Results)

- A large-scale UNF handling effort will be needed regardless of the UNF management strategy, acceptance rates, and acceptance start dates
 - There will always be a need to repackage large canisters unless the direct disposability of such canisters is shown to be feasible
 - If all UNF is placed in such canisters, ~11,200 could have to be re-packaged
 - Handling bare fuel at central storage facilities can reduce the number of canisters that would have to be repackaged
 - Any potential benefit of not having to reopen canisters reduces for lower acceptance rates and/or delay in the start of acceptance
 - Have to store and package bare fuel

Facility Concepts

Nuclear Energy

- Developed modular design concepts for dry (vertical and horizontal casks) and wet (pool)
- Modular approach allows for constructing facility lay-outs for different scenarios and logistics results
- Unit operation times estimated for all handling/processing steps Vertical Dry Storage
 Packaging/Re-Packaging



Insights Gained from Evaluating Facility Concept Configurations

Nuclear Energy

(preliminary results)

- Total storage footprint increases with acceptance rate and duration between start of CSF and repository operations
- Bare fuel storage can reduce facility storage footprint
- Storage facility size likely to increase if it is used for decay storage

- Vertical pad:
 - 30 ft x 80 ft
 - 8 Canisters per Pad
- Horizontal module:
 - 52 ft x 89 ft
 - 12 Canisters per Module
- Pool Basin:
 - 158 ft x 60 ft (x 55 ft deep)
 - 3500 Assemblies per Basin

NOTE : Does not include footprint that would be needed for infrastructure and support facilities or required spacing

Insights Gained from Evaluating Facility Concept Configurations

Nuclear Energy

(preliminary results)

Larger UNF throughput rates lead to larger processing bay requirements

- Into/out of storage
- Packaging/re-packaging facility stations (receipt, welding, release)
- Observation: Higher acceptance rate (6000 MT/yr) does not fully utilize all bays for an extended duration
- Placing the entire UNF inventory in large canisters does not appear to require an increase in the packaging/re-packaging facility capabilities versus maintaining bare fuel
 - Always a need to re-package canisters capability will always be required
- Use of large canisters for the entire inventory of UNF increases the number of canisters that would have to be opened, unless their disposability can be demonstrated
 - Could have a broader system impacts
 - ~11,200 canisters versus a reduced number see Slide 16
 - Peak arrival occurs early, then decreases significantly

Conclusions

Nuclear Energy

FY12 Objectives achieved

- Developed methodologies, approaches, and tools (Capability Development)
- Evaluated select UNF disposition scenarios (Capability Demonstration)
- Re-established important, foundational capability to assess potential UNF management options

FY12 Evaluation provided insight into potential UNF disposition pathways and identified areas where additional work are needed

- Logistics and facilities report to be completed as draft October 30th, 2012

FY13 activities

- Develop worker exposure methodology and implement in TSL
 - Assess FY12 cases
- Continued TSL development to implement blending/aging at the CSF and alternative UNF shipment strategies from the CSF
 - Assess FY12 cases
- Identify and evaluate bare fuel storage alternatives at CSF (i.e., vaults, single purpose casks)
- Inclusion of cask/fleet maintenance facilities in framework
- Evaluate sensitivity regarding CSF wet pool density
- Initiate assessment of advanced re-packaging techniques, gaps (dry, automated, remote)
- Initiate process flow diagram/process node descriptions