

Ductile-to-Brittle Transition Temperatures for High-Burnup PWR Cladding Alloys

Mike Billone and Yung Liu Argonne National Laboratory

U.S. NWTRB Winter Meeting November 20, 2013

Introduction

- •Materials and Experimental Methods
- Summary of Results
- Conclusions
- Future Priorities

Introduction: UFD ST R&D Objectives and NRC Concerns

Nuclear Energy

- Objectives of UFD Storage and Transportation (ST) R&D are to develop technical bases for demonstrating
- •Used fuel integrity for extended storage periods
- •Fuel retrievability and transportation after long term storage
- Transportation of high-burnup (HBU, >45 GWd/MTU) fuel

NRC Spent Fuel Storage and Transportation (SFST)

- Concerned about HBU cladding embrittlement after 20-y storage
- Concerned about transporting HBU fuel below cladding ductile-to-brittle transition temperature (DBTT)

Introduction Regulations and HBU Fuel Issues

Nuclear Energy

10 CFR 72: Criteria for Storage of Spent Nuclear Fuel

- Protect against cladding degradation that leads to gross ruptures or...
- ISG-1, Rev. 2 (2007): gross rupture is a crack >1 mm in width

10 CFR 71: Criteria for Transportation of Spent Nuclear Fuel

Ambient temperature: -29°C to 38°C (use most unfavorable)

NRC Interim Staff Guidance (ISG)–11, Revision 3 (2003)

• Limits HBU cladding T to 400°C for drying-transfer, storage & transportation

Embrittlement Concerns for HBU PWR Fuel Rod Cladding

- Higher hydrogen content: may embrittle as-irradiated cladding
- Higher decay heat: may lead to higher drying-storage temperatures
- Higher internal gas pressure: leads to higher peak hoop stresses
- Higher peak hoop stress: may cause radial-hydride precipitation and embrittlement during vacuum drying, transfer, and storage

Introduction Loads on Fuel Rods

Nuclear Energy

Loads on Fuel-Rod Cladding during Transport

- Normal transport conditions include vibration and shock
- Hypothetical accident conditions include severe impact loads
 - -Axial stresses due to impact and bending
 - –Hoop stresses (σ_{θ}) due to gas-pressure and "pinch-type" loading (F)

Introduction: Data Needs and Argonne Experimental Program

Nuclear Energy

Cladding Mechanical Properties and Failure Limits

- Available for HBU Zircaloy-4 (Zry-4) with circumferential hydrides
- Available for Zry-2 but data needed at high fast fluence (i.e., HBU)
- Data needs
 - Tensile properties of HBU M5[®] and ZIRLO[™] cladding alloys
 - Failure limits for all cladding alloys following drying and storage
 - Radial hydrides can embrittle cladding in elastic deformation regime

Argonne Experimental Program

- Develop family of ductility curves following slow cooling from \leq 400°C (ISG-11, Rev. 3 limit) and decreasing σ_{θ}
- Determine DBTT for each set of peak drying-storage T and σ_{θ}
- Goal: determine ranges of peak T and σ_{θ} for which DBTT $\leq 20^{\circ}$ C

Introduction: Circumferential and Radial Hydrides in HBU Cladding

Materials and Experimental Method

Note: Cladding materials are from fuel rods irradiated to HBU in commercial Pressurized Water Reactors (PWRs)

Materials: HBU Cladding Alloys in As-Irradiated Condition (Baseline) and after Simulated Drying-Storage (RHT) at 400°C

Cladding ТМТ H-Content, Peak RHT Drying Burnup, **GWd/MTU** Alloy Stress, MPa Cycles wppm 140 M5® RXA 63 94 ± 4 1 68 72 ± 10 110 **68** 58 ± 15 90 70 76 ± 5 0 70 140 ZIRLO™ **CWSRA** 650 ± 190 1 70 425 ± 63 110 70 110 350 ± 80 1 **68** 530 ± 100 90 68 480 ± 131 90 3 68 535 ± 50 80 **68** 530 ± 70 0 67 140 Zry-4 **CWSRA** 615 ± 82 1 520 ± 90 110 67 67 640 ± 140 0 67 300 ± 15 0

9

Experimental Method: Simulation of Drying and Storage by Means of Radial Hydride Treatment (RHT)

Rodlet Fabrication

Experimental Method: Ring Compression Test (RCT)

Nuclear Energy

Controlled temperature

Maximum permanent displacement ≈10% for uncracked rings

Summary of Results

Nuclear Energy

Susceptibility to Radial-Hydride Precipitation

- Low for HBU Zry-4 cladding
- Moderate for HBU ZIRLO[™]
- High for HBU M5®

Susceptibility to Radial-Hydride-Induced Embrittlement

- Low for HBU Zry-4
- Moderate for HBU M5®
- High for HBU ZIRLO[™]

DBTT Values for HBU Cladding Alloys

- Peak drying-storage hoop stress at 400°C: 140 MPa→110 MPa→90 MPa→0 MPa
- DBTT for HBU M5[®] after slow cooling: $80^{\circ}C \rightarrow 70^{\circ}C \rightarrow <20^{\circ}C \rightarrow <20^{\circ}C$
- DBTT for **HBU ZIRLOTM** after slow cooling: $185^{\circ}C \rightarrow 125^{\circ}C \rightarrow 20^{\circ}C \rightarrow <20^{\circ}C$
- DBTT for **HBU Zry-4** after slow cooling: $55^{\circ}C \rightarrow \langle 20^{\circ}C \rightarrow \rangle \rightarrow \rangle 90^{\circ}C$
 - Embrittled by circumferential hydrides: 615±82 wppm 520±90 wppm 640±140 wppm
 - HBU Zry-4 with 300±15 wppm was highly ductile at 20°C

RCT Ductility vs. Test Temperature for HBU M5[®]

Hydrides in Baseline and RHT (400°C, 140/110 MPa) HBU M5®

RCT Ductility vs. Test Temperature for HBU ZIRLO[™]

Hydrides in Baseline and RHT (400°C, 140/110 MPa) HBU ZIRLO™

RCT Ductility & DBTT for RHT (400°C) HBU Zry-4

Hydrides in Baseline and RHT (400°C, 140/110 MPa) HBU Zry-4

Conclusions

Nuclear Energy

Susceptibility to Radial-Hydride Precipitation

- Low for HBU Zry-4
- Moderate for HBU ZIRLO[™]
- High for HBU M5[®] (recrystallized-annealed microstructure & low H content)

Susceptibility to Radial-Hydride-Induced Embrittlement

- Low for HBU Zry-4 However, circumferential hydrides with >800 wppm will embrittle HBU Zry-4
- Moderate for HBU M5[®] due to sparse distribution of radial hydrides
- High for HBU ZIRLO[™] due to denser distribution of continuous radialcircumferential hydrides

■ Drying-Storage Conditions for which DBTT ≤20°C

- HBU M5[®] and ZIRLOTM: peak hoop stress (σ_{θ}) ≤90 MPa
- HBU Zry-4: peak $\sigma_{\theta} \leq 110$ MPa and hydrogen content <570 wppm

■ What is Fraction of HBU Fuel Rods with Peak $\sigma_{\theta} \leq 90$ MPa?

• Insufficient database to answer question (see next slide)

Action Items for EPRI ESCP Fuels Subcommittee (Chaired by M. Billone)

Nuclear Energy

End-of-Life Internal Gas Pressure for HBU PWR Fuel Rods

- Hundreds of thousands of PWR rods irradiated to >45 GWd/MTU
- EPRI-published data points (2007): 25
- Fuels Subcommittee expanded database (2013): $25 \rightarrow 60$
- Ongoing effort to expand database to >100 HBU PWR fuel rods

Best-Estimate Cladding and Plenum Temperatures

- Feedback from cask vendors
- Feedback from other tasks within UFD program

Range of Hydride Distributions across Cladding Wall

- Depends on operating conditions
- Difficult to find open-literature data beyond what Argonne has published
- Fuel vendors have restricted datasets; work with EPRI to establish data trends

Mechanical Properties of HBU M5[®] and ZIRLO[™]

- Very little data in open literature
- Fuel vendors have extensive datasets; work with EPRI to establish data trends

FY2014 Priorities

Nuclear Energy

Support Planning & Implementation of Industry HBU DEMO Project

• Effects of "rewetting" and multiple drying cycles

Help Establish Technical Bases for Extended Storage and Transportation of UNF, Especially HBU Fuel

- Effects of lower peak cladding temperature (e.g., 350°C)
 - Solubility limits: 200 wppm at $400^{\circ}C \rightarrow 120$ wppm at $350^{\circ}C$
 - Less hydrogen available for precipitation as radial hydrides
- Effects of multiple drying cycles at >90 MPa hoop stress and 350°C
- Mechanical properties and failure limits

Publications

- M.C. Billone et al. Phase I Ring Compression Testing of High-Burnup Cladding. FCRD-USED-2012-000039, Dec. 21, 2011.
- M.C. Billone et al. Baseline Studies for Ring Compression Testing of High-Burnup Fuel Cladding. FCRD-USED-2013-000040, ANL-12/58, Nov. 23, 2012.
- M.C. Billone et al. "Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions," *J. Nucl. Mater.* 433 (2013) 431-448.
- M.C. Billone et al., "Effects Drying and Storage on High-Burnup Cladding Ductility," Proc. IHLRWM Conf., Albuquerque, NM, Apr. 28 – May 2, 2013.
- M.C. Billone et al., "Baseline Properties and DBTT of High-Burnup PWR Fuel Cladding Alloys," PATRAM-2013, San Francisco, CA, Aug. 18-23, 2013.
- M.C. Billone et al. Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys. FCRD-UFD-2013-000401, ANL-13/16, Sept. 30, 2013.

Backup Slides

As-Irradiated Fuel and Cladding

HBU (68 GWd/MTU) Fuel Pellets and Pellet-Pellet Interfaces

Nuclear Energy

Fuel Cross Section near Pellet Mid-plane

Fuel Cross Section near Pellet-Pellet Interface

Hydride Distribution in HBU Fuel Rod Cladding

Hydride Distribution in HBU Fuel Rod Cladding with High Hydrogen Content

Nuclear Energy

17×17 ZIRLO™ 660±150 wppm H 840 wppm max local H Higher dT/dr

15×15 Zry-4 640±140 wppm H 850 wppm max local H Lower dT/dr

As-Irradiated (Baseline) HBU Cladding and HBU Cladding after Simulated Drying-Storage

DBTT Results Following Cooling from 400°C Peak RHT Temperature

Cladding Alloy	H- Content, wppm	Peak RHT Stress, MPa	Effective Radial- Hydride Length, % of Clad. Wall	DBTT, °C	Sponsor
RXA	94±4	140	72±10	80	DOE
M5®	72±10	110	61±10	70	DOE
	58±15	90	31±13	<20	DOE
	76±5	0	≈0	<20	DOE
	650±190	140	67±11	185	NRC
CWSRA	425±63	110	27±10	<150	NRC
ZIRLO™	350±80	110 (24-h hold)	33±13	125	NRC
	530 ± 100	90	19±9	20	DOE
	480±131	90 (3-cycle)	20±9	20	DOE
	535 ± 50	80	9±3	<20	DOE
	530±70	0	≈0	<20	DOE
CWSRA	615±82	140 (3-h hold)	16±4	55	NRC
Zrv-4	520±90	110 (8-h hold)	9±5	<20	NRC
	640±140	0	0	>90	DOE
	300±15	0	0	<20	DOE

Results for HBU M5[®]

Nuclear Energy

Baseline Studies for As-irradiated M5[®]

- 8-µm oxide-layer (δ_{ox}), 0.56-mm h_m, 9.51-mm D_{mo}
- $C_{H} = 76\pm5$ wppm, some radial hydrides, RHCF $\approx 0\%$
- High ductility (no cracking through 1.7 mm displacement)

HBU M5[®] Results after Simulated Drying/Storage

- 140 MPa @ 400°C: C_H = 94±4 wppm, RHCF = 72±10%, DBTT ≈80°C
 -Dissolution at 329°C; precipitation at 283°C (σ_θ = 116 MPa)
- 110 MPa @ 400°C: C_H = 72±10 wppm, RHCF = 61±10%, DBTT ≈70°C
 —Dissolution at 307°C; precipitation at 261°C (σ_θ = 87 MPa)
- 90 MPa @ 400°C: C_H = 58±15 wppm, RHCF = 31±13%, DBTT <20°C
 —Dissolution at 291°C; precipitation at 245°C (σ_θ = 69 MPa)

Hydrides in As-Irradiated HBU M5[®] at Same Elevation: Baseline Results

Nuclear Energy

Radial Hydrides

Hydrides in Baseline and RHT (400°C, 140/110 MPa) HBU M5®

Hydrides in Baseline and RHT (400°C, 90 MPa) HBU M5[®]

Results for HBU ZIRLO™

Nuclear Energy

■ Baseline Results for HBU ZIRLO[™]

- 47- μ m δ_{ox} , 0.54 mm h_m, 9.44-mm D_{mo}
- 530±70 wppm C_H, local radial hydrides (RHCF \approx 0%)
- 136±7 wppm H within inner 63% of cladding wall
- RCT ductility results (DBTT < 20°C): $7\% \rightarrow 11\%$ for $20^{\circ}C \rightarrow 150^{\circ}C$

■ HBU ZIRLO[™] Results after Simulated Drying/Storage

- 140 MPa @ 400°C & 650±190 wppm H: RHCF = 67±17%, DBTT ≈ 185°C
- 110 MPa @ 400°C & 350-425 wppm H: RHCF = 30±12%, DBTT ≈ 125°C (no change for 24-h vs. 1-h hold time)
- 90 MPa @ 400°C & 530±100 wppm H: RHCF = 19±9%, DBTT = 20°C (no change for 3-cycle drying)
- 80 MPa @ 400°C & 535±50 wppm H: RHCF = 9±3%, DBTT < 20°C

Hydrides in As-Irradiated HBU ZIRLO[™] at Same Axial Elevation: Baseline Results

Hydrides in Baseline and RHT (400°C, 140/110 MPa) HBU ZIRLO™

Hydrides in Baseline and RHT (400°C, 80/90 MPa) HBU ZIRLO™

Effects of Multiple (3) Drying Cycles on Radial Hydride Precipitation in HBU ZIRLO™

Nuclear Energy

Single-Cycle Drying 36% Maximum RHCF

Multiple-Cycle Drying 36% Maximum RHCF

Results for HBU Zry-4

Nuclear Energy

Baseline Results for HBU Zry-4

- 95- μ m δ_{ox} , 0.69 mm h_m , 10.56-mm D_{mo}
- 640 ± 140 wppm C_H, no radial hydrides (RHCF = 0)
- 246±29 wppm H within inner 63% of cladding wall
- Embrittlement at 20-90°C: high density of circumferential hydrides (>800 wppm H locally)
- HBU Zry-4 with 300±15 wppm C_H exhibited high ductility at RT

HBU Zry-4 Results after Simulated Drying/Storage

- 140 MPa @ 400°C and 615±82 wppm H: RHCF = 16±4%, DBTT ≈ 55°C
- 110 MPa @ 400°C and 520±90 wppm H: RHCF = 9±5%, DBTT < 20°C

Hydrides in As-Irradiated HBU Zry-4 at Same Axial Elevation

Nuclear Energy

Low C_H (<500 wppm) Ductile at RT

High C_H (>800 wppm) Brittle at RT

Hydrides in Baseline and RHT (400°C, 140/110 MPa) HBU Zry-4

Effects of Hydrogen Content on HBU Zry-4 (As-Irradiated) Ductility at RT

