

Nuclear Fuels Storage & Transportation Planning Project Office of Fuel Cycle Technologies

Nuclear Energy

Implications of Repackaging Used Nuclear Fuel

Rob Howard

Project Engineer, Used Fuel Systems DOE-NE Nuclear Fuels Storage and Transportation Planning Project (NFST) Oak Ridge National Laboratory

U.S. Nuclear Waste Technical Review Board Technical Workshop on the Impacts of Dry-Storage Canister Designs on Future Handling, Storage, Transportation, and Geologic Disposal of Spent Nuclear Fuel in the U.S.

Washington, D.C. November 18-19, 2013

Nuclear Energy

Caveat lector: Standard Contract between utilities and DOE (10 CFR 961)

This is a technical presentation that does not take into account the contractual limitations under the Standard Contract

Under the provisions of the Standard Contract, DOE does not consider spent fuel in canisters to be an acceptable waste form, absent a mutually agreed to contract modification

Considerations for Repackaging: Why, Where, When, and How all Matter

Nuclear Energy

Repackaging could be required for several reasons (why):

- Some storage systems in use are not certified for transportation (see Williams' presentation)
- Repository constraints (e.g., thermal, criticality) (see Bonano presentation)

Repackaging is complicated (how):

- Increases total fuel-handling operations
- Complicates pool operations and increases worker doses if performed at reactor sites
- Requires development and deployment of on-site repackaging systems if performed at shut-down reactor sites
- Generates additional low-level waste including discarded dry storage canisters
- Repackaging facility as part of an integrated waste management system may be appropriate

Repackaging could be reduced or eliminated provided (when, where):

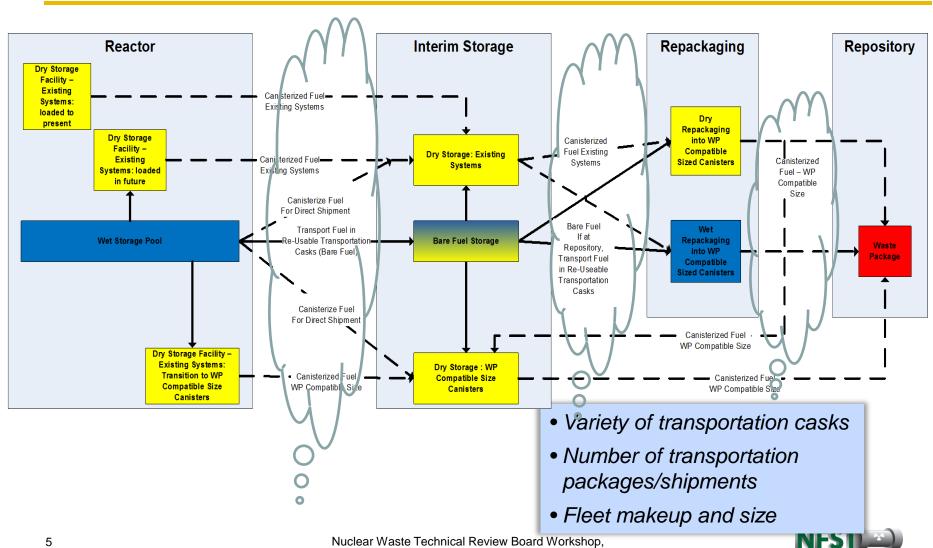
- Direct disposal of existing dry storage canisters is proven acceptable
- Standard storage, transportation and disposal canisters are developed and deployed

Repackaging Requires Substantial Effort and (Possibly) Facility or Facilities

Nuclear Energy

- Potentially package or re-package ~206,000 BWR and ~277,000 PWR fuel assemblies
- Canisters that would have to be opened depends on UNF management strategy (where), acceptance rates (how), and start dates (when)

	Acceptance	Acceptance	PWR	BWR	Total
	Rate (MT/yr)	Start	Canisters	Canisters	Canisters
	1500	2020	6998	4210	11208
	3000	2020	6974	4190	11164
Canistered Fuel Transport	6000	2020	6964	4183	11147 🔰
	1500	2035	7017	4223	11240
	3000	2035	7001	4216	11217
	6000	2035	7000	4208	11198
	1500	2020	5145	3051	8196
Bare and Canistered Fuel Transport	3000	2020	3190	1916	5106
	6000	2020	1712	1056	2768
	1500	2035	6326	3728	10054
	3000	2035	5315	3232	8547
	6000	2035	4094	2535	6629


Need to cut open these dual-purpose canisters to re-package fuel into these disposable canisters

	4-PWR/9-BWR	12-PWR/24-BWR	21-PWR/44-BWR	
PWR Waste Packages	52,250	17,417	9,952	Repository constraints
BWR Waste Packages	<u>30,333</u>	<u>11,375</u>	6,205	and timing drive size
Total Waste Packages	82,583	28,792	16,157	5

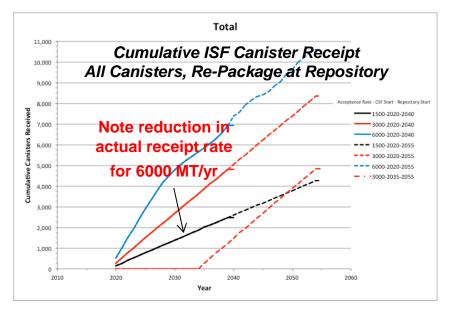
Where Repackaging Occurs Matters for Transportation System Functions and Requirements

Where Repackaging Occurs Matters for Regulatory Criteria Imposed on Canister Design and Facility Operations

Nuclear Energy

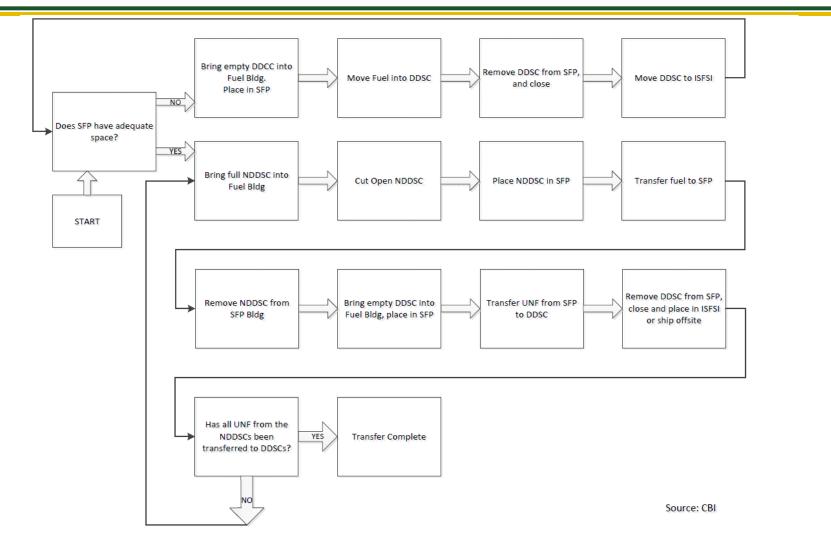
Regulations

- 10 CFR 20 "Standards for Protection Against Radiation" (all)
- 10 CFR 50 " Domestic Licensing of Production and Utilization Facilities" (at reactors)
- In CFR 72 "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste and Reactor Related Greater than Class "C" Waste" (reactors, ISFSIs, ISF)
- 10 CFR 71 "Packaging and Transportation of Radioactive Material" (at utility, at CSF, but not at repository)
- 10 CFR 6X "Disposal..."(at utility, at CSF, at repository)



Nuclear Energy

Implications of Repackaging: System Acceptance and Throughput Requirements Matter Everywhere


- Required system throughput rates may not be achievable at utilities without changing current canister loading and unloading practices
- At an ISF or a repository, processing rates and inventories in storage scale with UNF acceptance rate
 - Larger rates → larger facilities
 - Larger capital and annual operating funding
- High acceptance rates (i.e., 6000 MT/yr) lead to large facilities and supporting infrastructure
 - Large capacity storage facilities
 - High processing capability that may only be needed for a relatively short time; under-utilized facilities
 - Available fuel transported relatively quickly; rate then matches discharge

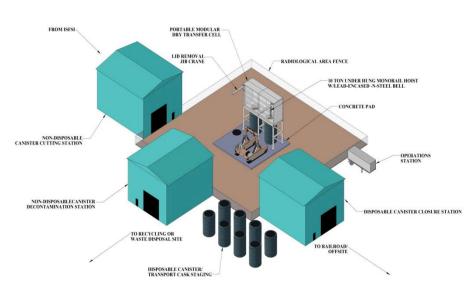
Repacking Process Flow at an Operating Reactor Site

Repackaging at Operating Sites: It will Impact Operations

Nuclear Energy

Source: CBI

- Extends Time for Cask Loading Activities
- Impacts Support Personnel Availability
 - Plant Operators (SFP Level Control)
 - Engineers (Technical Support)
 - Security Officers (Cask Movements)
 - Reactor Services Technicians (Fuel Loading, Cask Processing, Cask Transport)
 - Radiation Protection Technicians (Dose Measurements, Contamination Surveys, and Decontamination Services)
- Competition for Space and Resources
 - New Fuel Receipt
 - Refueling Outage Preparation and Execution
 - Spent Fuel Pool Clean-Out Campaigns
 - Nuclear Fuel Inspection
 - Refueling Bridge and Crane Maintenance and Testing
- Increases Low-Level Radwaste Stream
 - Debris Generated by the Cutting Activity
 - Discarded Legacy Canisters and Overpacks
- Increases Collective Radiation Exposure (Dose)
- Increases Training Burden to the Site



Repackaging at Shutdown Sites without Pool Access Requires Facility Design and Source: AREVA Construction

Nuclear Energy

and CBI

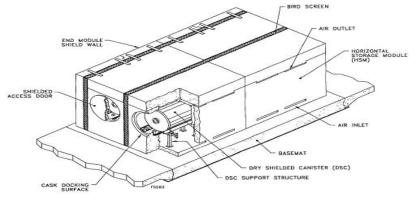
- Mobile hot cells could be designed and deployed
- Facility license needs to cover repackaging operations
- Site prep work required for each site
- Impacts transportation planning and logistics
- Overall system throughput could be an issue
- Use of a repackaging facility at an ISF or Repository might be more palatable

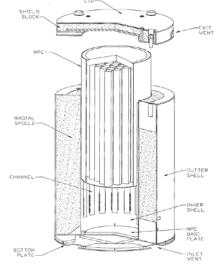
Repackaging Facilities at an ISF or Repository Offer System Flexibility

- Design and Ops must conform to Part 72 and/or Part 6X
- Purpose built , remote handling emphasis
- Modular design and construction
- Ability to buffer interfaces between system elements
- Ability to manage system throughput
- Shared facilities and human resources

Empty DSC, Storage Overpack, & Repacking Process Waste and Materials Must Be Managed

Nuclear Energy


DSC-Related Materials


- Typical Wastes:
 - DPC itself
 - DPC basket and other internals
 - DPC shield plug and lids
- Characteristics:
 - Low specific activity waste
 - Surface contaminated objects
 - Dependent on fuel characteristics and loading/unloading activities

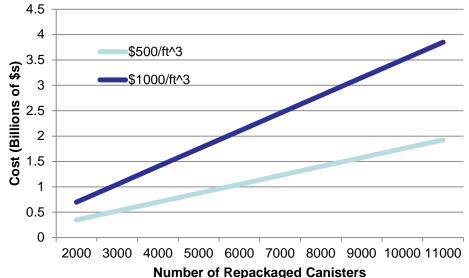
Storage Overpack could be:

- Free released for recycling (no contamination expected)
- Reused for at-reactor UNF storage (in DSC)

Process Wastes depend on repackaging method and equipment

Empty Canisters: Material Recovery and Sources: CBI Waste Management

Nuclear Energy

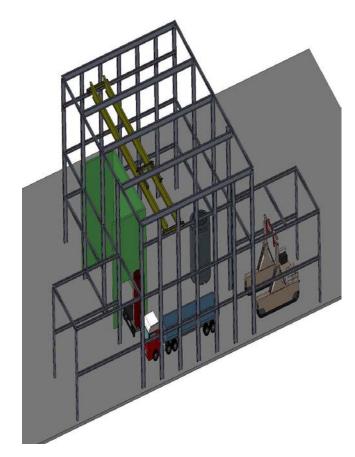

AREVA NFST

Reuse, Repurposing, Recycling and Direct Disposal

- Reuse: little demand to reuse a non-disposable canister Repurpose: must meet free release criteria NRC IE Information Notice 85-95
- Recycle: consider melting down and reusing in the fabrication of disposable canisters
- Direct Disposal: portions of the DSC cannot be decontaminated disposed of as low level waste 4.5

Low Level Waste

- Approximately 350 cubic feet of LLW/ DSC
- Disposal cost range \$500-\$1000 per cubic foot (Class A LLW)



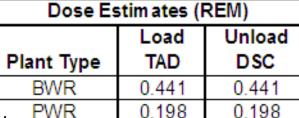
Empty Canisters: Systems will be needed for Material Management

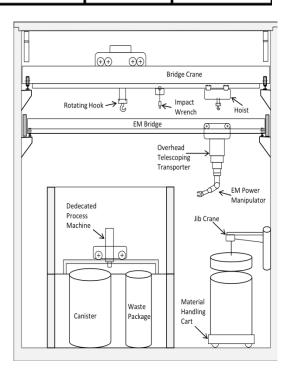
- Heavy load-handling capability
- Radiation dose surveying
- Cutting and removal of canister baskets
- Decontamination of internal canister surfaces (e.g., CO₂ ice blasting)
- Size reduction (wire cutting)
- Processing throughput
- Transportation interface
- Consider remelt and reuse in the fabrication of disposal canister (off site DD)

Worker Dose: When, Where and How Matter

Nuclear Energy

Source: CBI, AREVA, NFST


Worker Dose at Reactors Would Likely be the Highest


Total per-cask dose estimate at reactor:

- STAD loading dose estimates prepared based on empirical data from 12 Exelon spent fuel loading campaigns at eight (8) plants
- Dataset includes 46 BWR casks loaded and 15 PWR casks loaded

Worker Dose at an ISF or Repository can be managed by engineering more remote operations

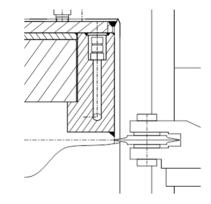
 DPC cutting activities and STAD canister welding can be done remotely

Cutting Technology Summary

Nuclear Energy

Sources: AREVA, CBI, NFST

Options


- Plasma Torch
- Skiving/Lathe
- Water Jet Cutting
- Wheel Cutting
- Grinding
- Diamond Saw Cutting
- Milling for connected ports (vent/siphon)
- Hole saw for port covers

Recommendations

- Use site/vendor preferred methods at reactor sites
- Consensus : Go dry
 - Skiving for circumferential welds
 - Milling for vent & siphon port covers ("silver dollars")
- R&D activities for wheel cutting to demonstrate process and improve throughput (e.g., 1 cut instead of 2+)

Nuclear Energy

How and Where Matters: Summary Relative Cost Comparison

Source: CBI

Table 1-1: Summary Cost Comparison							
Transfer Type Wet Transfer OR, ISF, R Dry Transfer NOR	Reactor Sites \$1.8	ISF \$1.3	Repository \$1.1				
21PWR / 44BWR Wet Transfer OR, ISF, R Dry Transfer NOR 12PWR / 24BWR	\$1.9	\$1.5	\$1.1				
Dry Transfer All Sites 21PWR / 44BWR	\$2.0	\$1.2	\$1.0				
Dry Transfer All Sites 12PWR / 24BWR	\$2.1	\$1.4	\$1.0				

Assumptions

- 1. Transfer of UNF will be from Reactor Sites to the CSF and then to the Repository.
- 2. The average distance between Reactor Sites and the CSF is 1250 miles. The distance between the CSF and Repository is 1250 miles.
- 3. The total number of assemblies to be transferred from non disposable canisters is 250,000.
- 4. 3000 MTU/year results in 300 DSCs containing 10,000 assemblies to be unloaded.
- 5. An on-site D&D facility is required to process empty DSCs.

Conclusions

Nuclear Energy

Repackaging a large number of storage canisters will be a major endeavor and will be complicated:

- Increases total fuel-handling operations
- Complicates system operations and increases worker doses if performed at reactor sites
- Requires development and deployment of on-site repackaging systems if performed at shut-down reactor sites
- Generates additional low-level waste including discarded dry storage canisters
- Repackaging facility as part of an integrated waste management system offers system flexibility

Why, Where, When and How Matter

• Choices influence waste management system logistics and operations

Repackaging could be reduced or eliminated provided

- Standard storage, transportation and disposal canisters are developed and deployed
- Direct disposal of existing dry storage canisters is proven acceptable

Acknowledgements

Nuclear Energy

 AREVA Federal Services (AFS) + Transnuclear (TN) ,URS, Dominion, Coghill Communications, Inc.

 Chicago Bridge and Iron Company (CB&I),+ Holtec International, Exelon Corporation, Longenecker and Associates

 Nuclear Fuels Storage and Transportation Planning Project + DoE, ANL, ORNL, SRNL, SNL

Discussion/Questions

- Why?
- When?
- Where?
- How?

