

Spent Nuclear Fuel and High Level Radioactive Waste Inventories for the Waste Form / Disposal Options Evaluation

David Sassani Principal Member of Technical Staff, Sandia National Laboratories Waste Form Degradation Technical Lead DOE Office of Nuclear Energy Used Nuclear Fuel Disposition R&D Campaign

U.S Nuclear Waste Technical Review Board Winter Meeting Washington, D.C., November 20, 2013

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-9762C

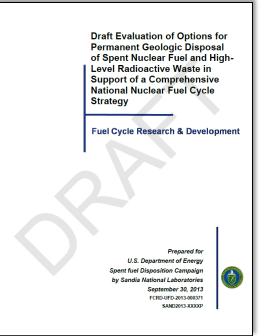
Goals of the Waste Form Disposal Options Evaluation

Nuclear Energy

Catalog the inventory of US spent nuclear fuel (SNF) and high-level radioactive waste (HLW)

Group wastes into categories based on similar disposal characteristics

Identify potential disposal options for each of the waste forms


Provide answers to questions such as:

Is a "one-size-fits-all" repository a good strategic option?

Do different waste forms perform differently enough in different disposal environments to warrant different approaches?

Do some disposal concepts perform better with or without specific waste forms?

Draft report delivered September 30, 2013

Contributors to

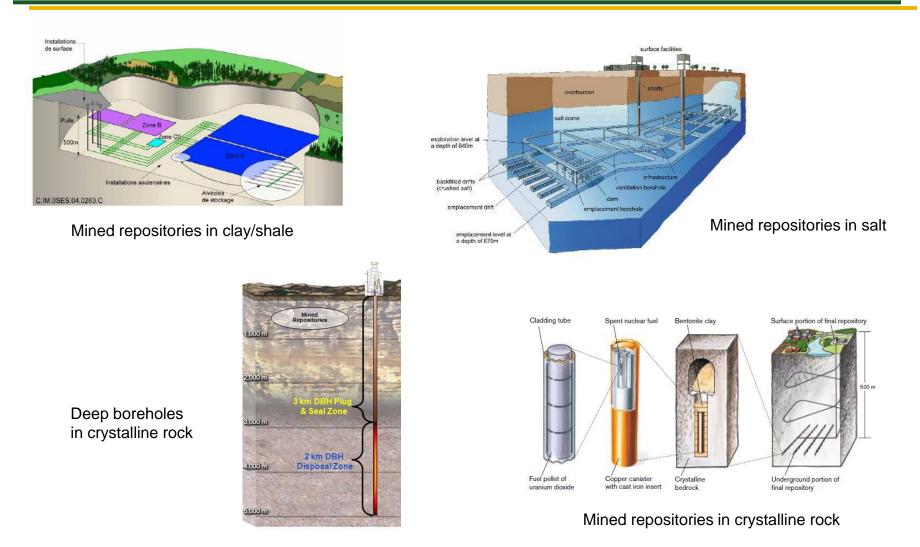
Waste Form Disposal Options Evaluation

Nuclear Energy

Contributors: 44 individuals, 14 organizations

- Sandia National Laboratories (Coordinating/Integrating Org.): E. Bonano, F. Durán, C. Jaeger, T. Lewis, P. McConnell, M. Pendleton, L. Price, S. Saltzstein, D. Sassani, P. Swift, J. Tillman
- Argonne National Laboratory: J. Cunnane, W. Ebert, J. Jerden, W.M. Nutt
- Complex Systems Group: T. Cotton
- Idaho National Laboratory: S. Birk, B. Carlsen, W. Hintze, L. Pincock, R. Wigeland
- Lawrence Livermore National Laboratory: W. Halsey
- Los Alamos National Laboratory: F. Badwan, S. DeMuth, M. Miller, B. Robinson
- Massachusetts Institute of Technology: M. Driscoll, C. Forsberg, M. Kazimi,
- Naval Nuclear Propulsion Program: A. Denko
- Oak Ridge National Laboratory: R. Howard, J. Peterson, J. Wagner
- Pacific Northwest National Laboratory: D. Kim, J. Vienna, J. Westsik
- Savannah River National Laboratory: J. Marra
- South Dakota School of Mines and Technology: R. White
- The Catholic University of America: W. Kot, I. Pegg
- Oversight
 - DOE NE: W. Boyle, T. Gunter
 - DOE EM: N. Buschman, S. Gomberg

Evaluation Assumptions


Nuclear Energy

HLW and SNF considered in the evaluation are restricted to existing materials and those reasonably expected to be generated by existing/currently planned processes

- The inventory of HLW and SNF in the U.S. requiring deep geologic isolation; based on the best available information
- Technologies under consideration, including both for waste treatments and disposal concepts, are limited to those that can be deployed in the near future
- Programmatic constraints (e.g., legal, regulatory, and contractual) are acknowledged where applicable, but are not used as bases
- Evaluations are primarily qualitative
 - Based in large part on insights from past experience in waste management and disposal programs in both the U.S. and other nations
- Disposal concepts identified by DOE's Used Fuel Disposition Campaign are adopted as useful and representative, rather than comprehensive

Disposal Concepts Evaluated in the Study

- SNF: Existing and reasonably foreseeable (as of 2048) SNF from existing commercial, defense, and research reactors (Wagner et al., 2012)
- HLW: Existing and projected (as of 2048) HLW from SRS, West Valley, Hanford and INL
- Waste types not presently planned for direct disposal without further treatment (e.g., calcine waste at INL; Cs/Sr capsules)
 - Some wastes have multiple treatment options, including direct disposal, resulting in multiple possible waste forms for some waste types
- Report identifies 43 waste types and 50 possible waste forms
 - Waste forms consolidated into 10 "Waste Groups" for analysis, based on similar properties
 - Full listings included in appendices

Waste Types, Waste Forms, and Waste Groups: A Note on Terminology

Nuclear Energy

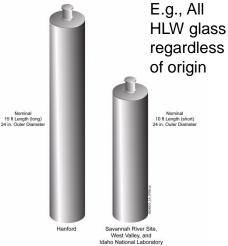
Waste Form is

what could go

underground

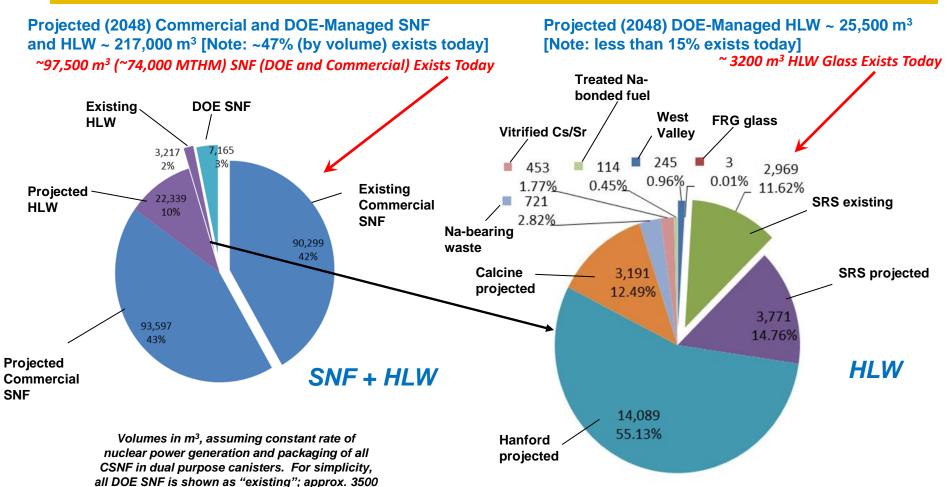
Waste Type is what exists today

E.g., existing tank waste, existing HLW glass



E.g., Canisters of HLW glass from multiple sites and sources

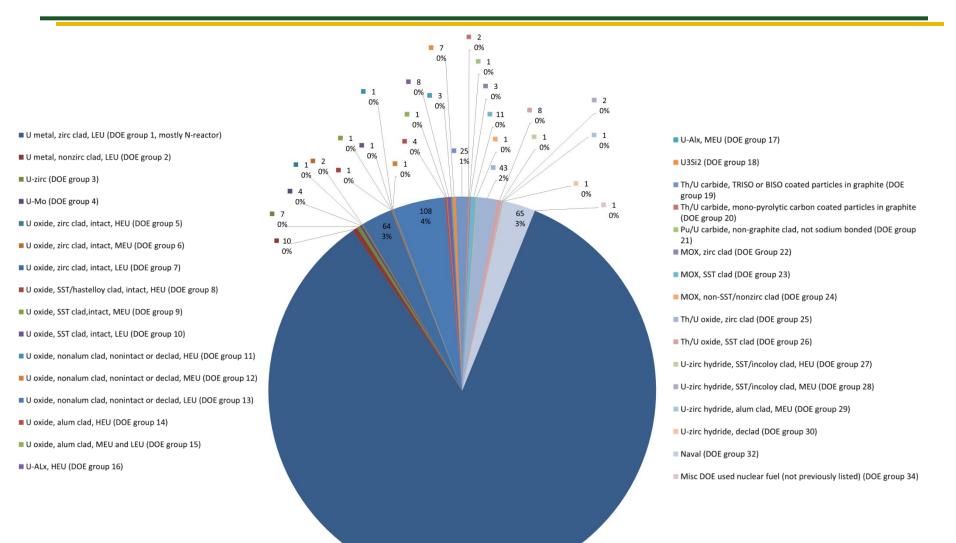
Waste Group is an aggregation of Waste Forms with similar characteristics



Across the full inventory, this study identified 43 waste types, 50 waste forms, and 10 waste groups

Volumes of the Main Waste Forms Existing and Projected to 2048

Nuclear Energy



Volumes in m³, assuming calcine is treated by Hot Isostatic Press, Na-bonded fuels undergo electrometallurgical treatment, and all other HLW wastes are vitrified

m³ of Naval SNF remains to be generated

Relative Quantities (by mass) of DOE-Managed Spent Nuclear Fuel

Characteristics Considered and Process for Delineating Waste Groups

Nuclear Energy

Characteristics Considered for Grouping Waste Forms

- Radionuclide Inventory
- Thermal
- Chemical
- Physical
- Packaging
- Safeguards and Security

Evaluation SubGroup Defined Waste Groups

Discussion of above characteristics using common set of information

Some Waste Groups Rely on One or More Distinct Aspects

• E.g., direct disposal of Metallic Na-bonded Fuels

Alternate Waste Forms Fall into Different Groups

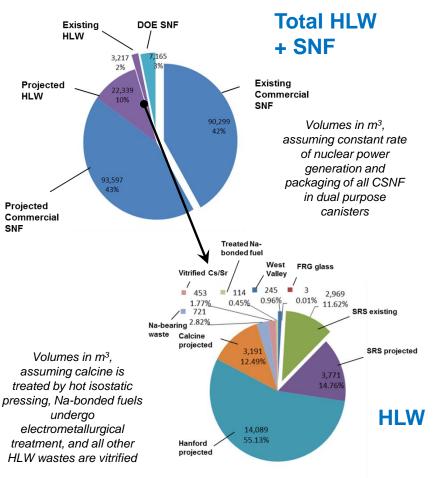
• E.g., Vitrified/ceramic HIP calcine vs. untreated calcine

Evaluation SubGroup

- DOE NE Bill Boyle, Tim Gunter
- DOE EM Nancy Buschman, Steve Gomberg
- SNL Tito Bonano, Laura Price, Sylvia Saltzstein, Dave Sassani, Peter Swift, Jack Tillman
- ANL Jim Jerdin, Mark Nutt
- CSG Tom Cotton
- LANL Mike Miller, Bruce Robinson
- MIT Charles Forsberg
- ORNL Rob Howard, John Wagner
- PNNL John Vienna
- SRNL Jim Marra

Waste Groups

- WG1: All Commercial SNF packaged in purpose-built disposal containers
- WG2: All Commercial SNF disposed of in dual-purpose containers of existing design
- WG3: All HLW glass (all types, existing and projected)
- WG4: Other engineered waste forms, including
 - Glass-bonded sodalite from salt waste stream of treated Na-bonded fuels
 - Metal ingots from metallic waste stream of treated Na-bonded fuels
 - Glass/ceramic calcine treated by hot isostatic pressing (HIP) (with, and without, additives)
- WG5: Metallic and non-oxide spent fuels
 - E.g., N-reactor, various research reactors
- WG6: Na-bonded fuel
 - E.g., Fermi-1
- WG7: DOE oxide fuels
 - Includes some HEU (e.g., Shippingport)
- WG8: Salt, granular solids, powders

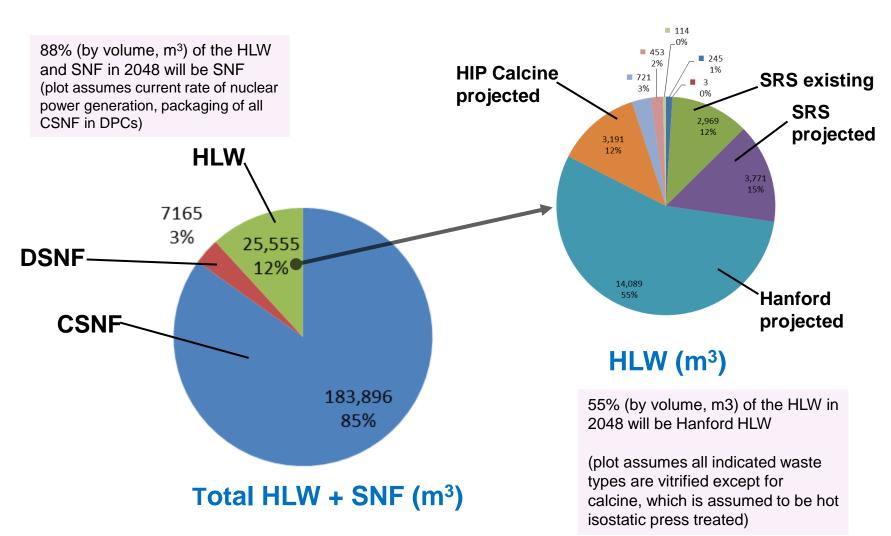

- All of the 43 "Waste Types" (50 Waste Forms) map to these 10 Waste Groups
- Some Waste Types map to more than one Waste Group, based on treatment options (e.g., Na-bonded fuels)
- For this study, we chose to map the 34 DOE fuel groups to 5 Waste Groups based on disposal characteristics
- E,g., salt waste stream from treated Na-bonded fuels, untreated calcine, Cs/Sr capsules
- WG9: Coated-particle fuel
 - E.g., Fort St. Vrain, Peach Bottom
- WG10: Naval fuel

Observations about the SNF and HLW Inventory

Nuclear Energy

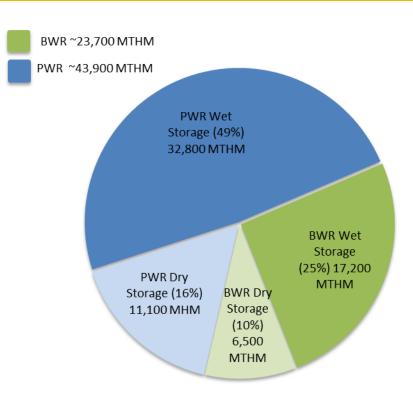
- Commercial SNF is the largest volume of waste (85% projected in 2048)
- HLW will be the second largest volume
- Other DOE-managed wastes have a variety of characteristics
 - Most DOE waste types exist in relatively small volumes
- Some waste types could have multiple treatment options, and some wastes could perhaps be disposed of without planned treatments
- No wastes pose unusual safeguards and security concerns except granular and powdered waste forms and small capsules

Waste Volumes projected in 2048

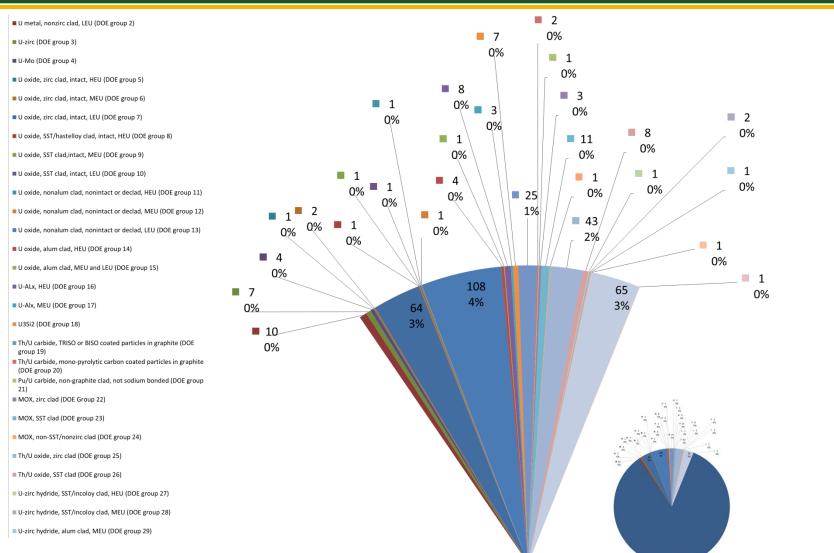


Nuclear Energy

BACKUP MATERIALS


Relative Amounts of Projected HLW and SNF in 2048

Current Commercial SNF Storage


Nuclear Energy

Distribution of current (2011) commercial SNF inventory in wet and dry storage

Relative Quantities (by mass) of DOE-Managed Spent Nuclear Fuel

Waste Group Details (p. 1 of 4)

Nuclear Energy

Table 3-1. Waste groups

Waste Group Identifier	Waste Form Identifier	Overlaps With	Waste Type (projected as of 2048)	Quantity of Waste Type	Waste Form
WG1—CSNF purpose-built containers	1A	1B	Commercial SNF, currently existing and projected through 2048	142,000 MTHM	Purpose-built disposal canister
WG2—CSNF in DPCs	1B	1A	Commercial SNF, currently existing and projected through 2048	142,000 MTHM	Dual purpose canisters (DPCs)
WG3—HLW glass	36		Savannah River HLW tank waste	4,000,000 gallons of reprocessing waste in tanks	Existing Savannah River HLW Glass
	37		West Valley HLW tank waste	600,000 gallons of reprocessing waste in tanks	Existing West Valley HLW Glass
	38		Federal Republic of Germany glass at Hanford	34 canisters	Glass logs containing Sr and Cs
	39		Hanford tank waste	53 million gallons of reprocessing waste in tanks	Projected glass waste from Hanford
	40		Savannah River tank waste	28,000,000 gallons of reprocessing HLW in tanks	Projected glass waste from Savannah River
	41C	41A, 41B, 41D	Calcine waste	4400 m ³	Calcine waste that has been vitrified
	43B	43A	Cs-Sr capsules at Hanford	1335 Cs capsules, 601 Sr capsules	Vitrified Cs and Sr from capsules
WG4—Other engineered waste forms	32		Metallic sodium bonded (EBR-II, INTEC, and FFTF) (group 31)	26 MTHM	Glass-bonded Sodalite Waste form from EMT
					INL Metal Waste Form resulting from EMT
	33B	33A, 33C	Metallic sodium bonded (Fermi-1) (group 31)	34 MTHM	Glass-bonded Sodalite Waste form from EMT
		33A, 33C			INL Metal Waste Form resulting from EMT
	41A	41B, 41C, 41D	Calcine waste	4400 m ³	Calcine waste treated by hot isostatic pressing, including silica, titanium and calcium sulfate

Waste Group Details (p. 2 of 4)

Waste Group Identifier	Waste Form Identifier	Overlaps With	Waste Type (projected as of 2048)	Quantity of Waste Type	Waste Form
	41B	41A, 41C, 41D	Calcine waste	4400 m ³	Calcine waste treated by hot isostatic pressing without silica, titanium and calcium sulfate
WG5—Metallic spent fuels	2		U metal, zirc clad, LEU (group 1, mostly N-reactor)	2,096 MTHM	Multicanister overpack (MCO) 18x15 canister
	3		U metal, nonzirc clad, LEU (group 2)	10 MTHM	MCO 18x10 canister
	4		U-zirc (group 3)	7 MTHM	18x10 canister 18x15 canister
	5		U-Mo (group 4)	4 MTHM	18x10 canister
	17		U-ALx, HEU (group 16)	8 MTHM	18x10 canister 18x15 canister
	18		U-Alx, MEU (group 17)	3 MTHM	18x10 canister
	19		U3Si2 (group 18)	7 MTHM	18x10 canister 18x15 canister
	22		Pu/U carbide, non-graphite clad, not sodium bonded (group 21)	<1 MTHM	18x10 canister 18x15 canister
	28		U-zirc hydride, SST/incoloy clad, HEU (group 27)	<1 MTHM	18x10 canister
	29		U-zirc hydride, SST/incoloy clad, MEU (group 28)	2 MTHM	18x10 canister
	30		U-zirc hydride, alum clad, MEU (group 29)	<1 MTHM	18x10 canister
	31		U-zirc hydride, declad (group 30)	<1 MTHM	18x10 canister
	35		Misc DOE spent nuclear fuel (not previously listed) (group 34)	<1 MTHM	18x10 canister 18x15 canister
WG6—Na-bonded fuels	33A	33B, 33C	Metallic sodium bonded (Fermi-1) (group 31)	34 MTHM	Metallic sodium bonded (Fermi-1)
WG7—DOE oxide fuels	6		U oxide, zirc clad, intact, HEU (group 5)	<1 MTHM	18x10 canister 18x15 canister
	7		U oxide, zirc clad, intact, MEU (group 6)	2 MTHM	18x10 canister

Waste Group Details (p. 3 of 4)

Waste Group Identifier	Waste Form Identifier	Overlaps With	Waste Type (projected as of 2048)	Quantity of Waste Type	Waste Form
	8		U oxide, zirc clad, intact, LEU (group 7)	64 MTHM	18x10 canister 18x15 canister MCO
	9		U oxide, stainless steel/hastelloy clad, intact, HEU (group 8)	<1 MTHM	18x10 canister
	10		U oxide, stainless steel clad,intact, MEU (group 9)	<1 MTHM	18x10 canister 18x15 canister
	11		U oxide, stainless steel clad, intact, LEU (group 10)	<1 MTHM	18x10 canister 18x15 canister
	12		U oxide, nonalum clad, nonintact or declad, HEU (group 11)	<1 MTHM	18x10 canister 18x15 canister
	13		U oxide, nonalum clad, nonintact or declad, MEU (group 12)	<1 MTHM	18x10 canister 18x15 canister
	14		U oxide, nonalum clad, nonintact or declad, LEU (group 13)	108 MTHM	18x10 canister 18x15 canister
	15		U oxide, alum clad, HEU (group 14)	4 MTHM	18x10 canister 24x10 canister
	16		U oxide, alum clad, MEU and LEU (group 15)	<1 MTHM	18x10 canister
	23		MOX, zirc clad (Group 22)	ЗМТНМ	18x10 canister
	24		MOX, stainless steel clad (group 23)	11 MTHM	18x10 canister 18x15 canister
	25		MOX, non-stainless steel/nonzirc clad (group 24)	<1 MTHM	18x10 canister 18x15 canister
	26		Th/U oxide, zirc clad (group 25)	43 MTHM	18x10 canister 18x15 canister 24x15 canister
	27		Th/U oxide, stainless steel clad (group 26)	8 MTHM	18x10 canister 18x15 canister
WG8—salt, granular solids, powder	33C	33A, 33B	Metallic sodium bonded (Fermi-1) (group 31)	34 MTHM	Salt waste from EMT

Waste Group Details (p. 4 of 4)

Waste Group Identifier	Waste Form Identifier	Overlaps With	Waste Type (projected as of 2048)	Quantity of Waste Type	Waste Form
	41D	41A, 41B, 41C	Calcined waste	4400 m ³	Calcined waste that is disposed of without further treatment
	42		Sodium-bearing waste at INL	810,000 gallons	Sodium-bearing waste treated by fluidized bed steam reforming (FBSR)
	43A	43B	Cs-Sr capsules at Hanford	1335 Cs capsules, 601 Sr capsules	Overpacked Cs-Sr capsules from Hanford
WG9—coated particle spent fuels	20		Th/U carbide, TRISO or BISO coated particles in graphite (group 19)	25 MTHM	18x10 canister 18x15 canister
	21		Th/U carbide, mono-pyrolytic carbon coated particles in graphite (group 20)	2 MTHM	18x15 canister
WG10 –Naval Fuel	34		Naval (group 32)	65 MTHM	Naval fuel in Naval canister