

Coupled Model for Thermal-Hydrological-Mechanical Processes in a High-Level Radioactive Waste Repository in Salt

Nuclear Energy

J. Guadalupe Argüello, J. E. Bean, J. F. Holland, & J. S. Rath* Sandia National Laboratories

*(with contributions from numerous others currently at or retired from Sandia, as well as various contributions over the years from RESPEC)

U.S. Nuclear Waste Technical Review Board Meeting Albuquerque, NM March 19, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-1439P.

Outline

Brief Overview of Sandia's Historical Efforts Related to Salt Repositories (Geomechanics Perspective)

- WIPP Full-Scale Thermal-Structural Interactions (TSI) In-Situ Tests
- Technology developed for WIPP
- Verification & Validation (V&V) of Legacy Technology

Next-Generation High-Performance Computing (HPC) Efforts/Technology

- Software & Hardware Advances
- Multi-Physics Coupling
- SIERRA Mechanics
- Current and Future V&V efforts

Additional Work on Salt for High-Level Waste (HLW) Repository

- Constitutive Modeling
- International Collaborations

Demonstration Problems

- US-German Isothermal Free Convergence (IFC) & Heated Free Convergence Probe (HFCP) Benchmark Problems
- Demo Problem on a Generic HLW Repository
- Summary

Brief Overview of Sandia's Historical Efforts Related to Salt Repositories (Geomechanics Perspective)

WIPP Schematic

Nuclear Energy

Past Salt Geomechanics Efforts Conducted at WIPP

Nuclear Energy

- Early-on Sandia tasked with developing technology for predicting the geomechanical response of rock salt (thermo-mechanical – e.g. creep models, Sancho, Coyote, SPECTROM-32, SPECTROM-41, SANTOS, JAC3D, etc.)
- TSI Full-Scale Experimental Rooms Fielded at WIPP; with one of the objectives being the evaluation of the predictive models and techniques being developed

Room D – Mining Development Test Data vs. Calculated Results (Isothermal Room)

Room B Field Test at WIPP

Nuclear Energy

Overtest for Simulated Defense High-Level Waste (Room B): In Situ Data Report (May 1984 – February 1988)

Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

Darrell E. Munson, Robert L. Jones, John R. Ball, Robert M. Clancy, David L. Hoag, Sharon V. Petney

Room B – Over-test for Simulated Defense High-Level Waste (Heated Room of Same Geometry and at Same Horizon as the Isothermal Room D)

Various other WIPP experimental configurations were also simulated for comparison with measurements*

* [Munson, D. E., "Constitutive Model of Creep in Rock Salt Applied to Underground Room Closure," Int. J. Rock Mech. Min. Sci., Vol. 34, No. 2, pp. 233-247, 1997]

Next-Generation HPC Efforts/Technology

- Since mid-1980's, ~30 years of software and hardware advances have transpired
- Sandia has built a new generation of massively-parallel multiphysics capabilities into a single computational framework to support the Sandia engineering sciences mission (ASC)
- These tools recently being adapted for simulating coupled geomechanics for a waste repository setting
 - LDRD (laboratory-directly research & development)
 - UFD (used fuels disposition campaign)

Panel Entryway Seal

- Is Room Closure Inhibited by Seal?
- What Sorts of Loads Induced on Seal?

Past/Recent: State-of-the-Art integrates single physics codes to achieve coarse spatial and time scale simulation...

Future: SIERRA Mechanics leverages >10 years of ASC development providing:

- Framework for coupled multi-physics simulations in a massively parallel environment
 - Scalability from 1 to thousands of processors on a variety of platforms
 - Launching point for fully integrated THMC coupling with adaptive solution control

[Edwards, H.C., & Stewart, J.R. 2001. SIERRA: A Software Environment for Developing Complex Multi-Physics Applications. In K.J. Bathe (ed.), *First MIT Conference on Computational Fluid and Solid Mechanics*. Amsterdam: Elsevier.]

Nuclear Energy SIERRA Mechanics Coupling Between Nuclear Energy Application Codes

- Temperatures are used in the constitutive equations for the salt materials. If needed (hydrological processes), pore pressures are used to compute effective stresses from the total stresses in ADAGIO.
- Constitutive model for salt is implemented in LAME library within ADAGIO
- Node displacements from ADAGIO are used to update the ARIA geometry. (Porosity, thermal conductivity, and intrinsic permeability of crushed salt backfill, if hydrologically present, are adjusted accordingly.)

ENERGY Nuclear Energy Preliminary Validation of SIERRA Mechanics Against WIPP Rooms D & B Data

Time (days)

[Argüello, J.G., and J.S. Rath, 2012. SIERRA Mechanics for Coupled Multi-Physics Modeling of Salt Repositories. In P. Bérest, M. Ghoreychi, F. Hadj-Hassen, & M. Tijani (Eds.), *Mechanical Behavior of Salt VII.* Boca Raton: Balkema.]

Additional Work on Salt for HLW Repository

- Salt constitutive modeling is very important (forms basis for US-German collaborations)
- Our constitutive model development efforts stopped in mid-90's; German development continued
- The Multi-mechanism Deformation (MD) model is currently in use in our HPC codes (some initial work on "MDCF," but not mature)
- Need to assess the international capabilities
- Examine potential development of our model & evaluate other existing models
- Identify best features and deficiencies

Room Temperature Triaxial Test Sample of WIPP Salt at 3.0 MPa Confining Stress

Multi-mechanism deformation (MD) model:

Participants in Current U.S.-German Joint Project III

- Comparison of current constitutive models and simulation procedures on the basis of model calculations of the thermomechanical behavior and healing of rock salt"
- Previous phases (i.e., JPI & JPII) looked at behavior without heat
- The German project partners are each represented by:
 - Dr. Andreas Hampel, Scientific Consultant
 - Dr. Wolfgang Minkley, Institut für Gebirgsmechanik GmbH
 - Ms. Alexandra Pudewills, Institut f
 ür Nukleare Entsorgung (INE), Karlsruher Institut f
 ür Technologie
 - Prof. Dr. Reinhard Rokahr, Institut f
 ür Unterirdisches Bauen, Leibniz Universit
 ät Hannover
 - Prof. Dr. Karl-Heinz Lux, Lehrstuhl f
 ür Deponietechnik und Geomechanik, Technische Universit
 ät Clausthal
 - Prof. Dr. Joachim Stahlmann, Institut f
 ür Grundbau und Bodenmechanik, Technische Universit
 ät Braunschweig
- Sandia National Laboratories joined as a partner in FY2010

Overview of Joint Project III – Current Project

Current Joint Project on the "Comparison of current constitutive models and simulation procedures on the basis of model calculations of the thermo-mechanical behavior and healing of rock salt"

<u>Joint Project III (Oct. 01, 2010 – Sept. 30, 2013 (general) / Jan. 31,2014</u> (Hampel)):

• Check & compare the suitability of the models for the simulation of the thermo-mechanical behavior and damage reduction (sealing/healing) of rock salt (Comparisons of the simulation results with each other and with in-situ data.)

Thermo-Mechanical behavior and sealing/healing of salt.

Joint Project III Target Simulations for Comparison with Data

- In-situ calculation object "Bohrlochkonvergenz" (borehole convergence) in the Asse mine
- In-situ calculation object "Erhitzerversuche" (heater experiments) in the Asse mine
- In-situ calculation object "Dammjoch" (bulkhead) in the Asse mine

1911: drift excavated
1914: a 25 m long section lined with a cast steel tube, residual gap filled with concrete
2008?: permeability measurements (gas injection)

- Recent additions to three originally proposed Joint Project III benchmark problems and extension (BMWi) of project for Germans
 - In-situ isothermal WIPP Room D and heated WIPP Room B simulations
 - Additional laboratory testing of both clean and argillaceous WIPP salt samples – needed for German constitutive models

Demonstration Problems

First JPIII Target Simulation (IFC) for Comparison with Data

Nuclear Energy

Borehole Closure Results with Varying Secondary Creep Parameter. Fitting of this parameter is allowed to match data; subsequent thermomechanical (heater) analyses used this fitted value without further changes.

[Argüello, J.G., Holland, J.F., and Bean, J.E., 2012. International Benchmark Calculations of Field Experiments at the Asse Salt Mine. FCRD-UFD-2012-000374, Sandia National Laboratories (SAND2013-8193), Albuquerque, NM.]

ENERGYNuclear Energy **Second JPIII Target Simulation (HFCP) for Comparison with Data**

[Hampel, A., et al., 2013. Benchmark Calculations of the Thermo-Mechanical Behavior of Rock Salt – Results from a US-German Joint Project. (ARMA-13-456). *Proc. American Rock Mechanics Association (ARMA) 47th US Rock Mechanics / Geomechanics Symposium, 23-26 June 2013.* San Francisco: American Rock Mechanics Association.]

Coupled Thermal-Mechanical Simulation of Generic HLW Salt Repository

Nuclear Energy

• Long duration simulation to room closure

Generic HLW Salt Repository Problem Definition

Nuclear Energy

Sierra Mechanics Thermal-Mechanical Simulation of Generic HLW Salt Repository

Nuclear Energy

- Three-dimensional fully coupled thermal/mechanical analysis
- Massively Parallel Calculation 96 processors
- Dissimilar meshes and domains for thermal and structural mechanics
- Contact surfaces used for both thermal and structural problems

Thermal Analysis Features:

- 904736 nodes / 864927 elements
- Contact surfaces used to accommodate heat conduction between contacting surfaces (alcove and haulage way)
- Re-computation of radiation view factors for deforming heated room surfaces

Structural Analysis Features:

- Quasistatic analysis with 294698 nodes / 279537
 elements
- Large deformation, large strain formulation
- Nonlinear MD and power law creep models for salt
- Volumetric compaction model for the crushed salt
- Contact surfaces defined to allow arbitrary roof, rib, and floor contact
- Temperature dependent material properties

- Computational effort is in contact algorithm and integration of constitutive models
- Full MD model is more expensive than the PLC by a factor of 3 (using 2nd mechanism of the MD only for the PLC)
- Stand alone PLC model in Adagio is 3 times slower than using the 2nd mechanism in the MD model to represent PLC behavior (difference due to method of integration)

Repository Temperature Contours

Crushed Salt Backfill Porosity Contours

[Stone, C.M., Holland, J.F., Bean, J.E., & Argüello, J.G. 2010. Coupled Thermal- Mechanical Analyses of a Generic Salt Repository for High-Level Waste (ARMA-10-180). *Proc. American Rock Mechanics Association (ARMA) 44th US Rock Mechanics Symposium, 27-30 June 2010.* Salt Lake City: American Rock Mechanics Association.]

- Have made some significant strides in adapting SIERRA Mechanics for repository applications
- A basic multi-physics capability has been demonstrated and is available in SIERRA Mechanics, but significant work remains to make it more general and accessible in a "production" capability sense
- Have done some preliminary validation of SIERRA Mechanics to ensure its applicability to repository problems; more needed, particularly for non-salt
- Continue to work on providing state-of-the-art "leading-edge" constitutive models for use in repository applications
- International collaborations are very important and are allowing us to leverage against many on-going efforts
- Testing and modeling of WIPP salt performed by German research groups is of enormous value to generic salt repository science

Questions??