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In-drift waste emplacement strategy 

Simple lower  

cost method. 

Backfill is readily 

available in salt 

formations 

DOE/CBFO-12-3485 

Hardin et al., FCRD-UFD-2012-
000219 
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 Hakim Boukhalfa – Chemistry 
 Florie Caporuscio – Chemistry 
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Distribution of Heat Loads: DOE-Managed Waste 

Carter, J.T., A.J. Luptak, J. Gastelum, C. Stockman, A. Miller. 2012. Fuel Cycle 
Potential Waste Inventory for Disposition. DOE Office of Nuclear Energy Report 
FCR&D-USED-2010-000031, Rev 5.  

High-Level Waste DOE Spent Nuclear Fuel 

Defense waste heat loads are much lower than commercial SNF heat 
loads planned for Yucca Mountain (6200 – 8800W/canister) 

More than 90% of is less than 220W 
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 Bedded salt has favorable characteristics for heat-
generating waste disposal: 
– Self-sealing rheology 
– Very low permeability in its intact/final states 
– High thermal conductivity 

 Past heater tests in salt provide data 
for basic model validation and salt  
material properties 
– Evidence of heat pipe activity  

around a 130oC heater  

 

From Brady et al. (2013). 

Vapor flux 

Condensation 

Liquid flux (brine) 

Boiling region 

Hot 

Heat pipe: 

Background 
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Simulator Description  

• FEHM developed at Los Alamos 30+ years fehm.lanl.gov 

• Used for 150+ peer reviewed articles 
fehm.lanl.gov/pdfs/FEHM_references_list.pdf 

• Fully coupled thermal, mechanical, chemical, 
multiphase (gas, water vapor, water, rock) 

• Uses LaGriT: Powerful 3-D grid generation tool 
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thermal only  

Code Validation Sample 

 Pile of crushed salt: 
 
 Radially 

symmetric 
simulation 

• Purpose: 
– Test crushed salt (RoM) thermal model: 

 

Thermocouple  
6.4 cm below bulb 

Stauffer et al., 2013 

 = porosity 
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Thermal only simulation examples 

Intact salt

Intact salt

540 ft

20 ft
Model domain

Waste packages

10
0 

ft

Reflection boundaries are used to reduce model domain 

Map view of a potential salt repository : in-drift style 
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Thermal only simulation examples 
Vertical temperature for different 1000W canister spacing 
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Thermal only simulation examples 
Vertical temperature for canisters spaced 0.9 m apart 

2014 Harp, D.R., P.H. Stauffer, P.K. Mishra, D.G. 
Levitt, B.A. Robinson, Modeling of High-Level Nuclear 
Waste Disposal in a Salt Repository, accepted, 
Nuclear Technology. 

220W Canisters reach 95C 
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Many of the remaining simulations are for a set of 
5 canisters lying in-drift on the floor 

3-D model domain with red 
access tunnels and green 
backfill.  Intact salt is cyan. 

Map view at the drift floor, 
canisters are red 
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Canisters spacing  

Comparison of  
Thermal only VS Thermal + water + water vapor 

Image is zoomed in on three 
of the five heaters 
 
 
Heat load = 1500W/canister 
 
Time = 730 days after heating 
begins. 
 
Canisters spacing = 1 m. 
 3-D model domain with red 

access tunnels and green 
backfill.  Intact salt is cyan. 

Thermal only  

Thermal + water + water vapor 
Isothermal region indicative of 
heat pipe 
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thermal only  

Temperature Difference Image 
Thermal only – (Thermal + water + water vapor) 

Heat load = 1500W/canister   
Time = 730 days after heating begins. 

Canisters spacing = 1 m. 
 

Vapor/liquid heat pipe is 44C cooler in the heaters 
 
 Thermal only  

Thermal + water + water vapor 
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Thermo Hydrological Chemical Simulations 
require many coupled processes with feedbacks 

• Changes in porosity lead to changes in: 
– permeability 
– thermal conductivity and heat capacity 
– vapor diffusion coefficient 

• Changes in temperature lead to changes in: 
– thermal conductivity 
– salt solubility 
– water vapor pressure 
– brine viscosity 
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Salt specific algorithms in FEHM for 
Thermo Hydrological Chemical Simulations  

 Thermal Conductivity of Salt as a 
Function of Porosity and Temperature 

 Salt solubility as a function of 
temperature 

 Precipitation/Dissolution of Salt 
 Water vapor diffusion coefficient as a 

function of pressure, temperature, and 
porosity 

• Capillary pressure relationships  

• Permeability-Porosity Relationship for RoM Salt 
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2013 Stauffer, P.H., et al., Coupled model for heat and water transport in a high 
level waste repository in salt, FCRD-UFD- 2013-000206 Los Alamos National 
Laboratory Document LA-UR 13-27584 
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Salt specific algorithms in FEHM for 
Thermo Hydrological Chemical Simulations  

 Vapor Pressure of Water as a function of Aqueous Sodium 
Chloride Concentration and Temperature 
 
 

The blue vertical 
lines span the region 
of interest for most of 
our simulations  

Sparrow (2003) 
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Salt specific algorithms in FEHM for 
Thermo Hydrological Chemical Simulations  

 Heat transfer across the air gap (radiation + convection) 
 Clay Dehydration 
 New diagnostic output (water vapor pressure, vapor diffusion 

coefficient, permeability, porosity, thermal conductivity) 
 
  Node     perm (m2)      porosity       Kx W/(m K)     Pwv (MPa)      D*wv (m2/s)   ps_delta_rxn 

  117495    0.10000E-20    0.10000E-02     5.3361        0.31557E-02    0.10629E-12     0.0000            Intact Salt 
  102233    0.10000E-18    0.10000E-01     5.0982        0.64491E-02    0.87686E-09    0.29872E-11   Intact Salt 
    85866    0.10000E-10    0.99900             14.000        0.80089E-02    0.28997E-04     0.0000           AIR 
    70134    0.27929E-11    0.48402            0.57114       0.19505E-01    0.19459E-04    0.39003E-05   Crushed Salt 
    54963    0.15400E-17    0.89400E-02     4.0922        0.10769            0.79177E-05     0.0000            Crushed Salt 
    43160    0.88841E-17    0.13046E-01     3.9657        0.10906            0.93052E-05     0.0000            Crushed Salt 
    39022    0.10000E-20    0.10000E-04     1.1000        0.11204            0.88788E-06     0.0000            Waste Canister 
    34337    0.10000E-20    0.10000E-04     1.1000        0.11307            0.90078E-06     0.0000            Waste Canister    
    15980    0.10000E-20    0.10000E-04     1.1000        0.84381E-01    0.86175E-06     0.0000            Waste Canister 
    10667    0.10000E-18    0.10000E-01     4.2656        0.64085E-01    0.39347E-05   -0.91248E-07    Intact Salt 
      3612    0.10000E-18    0.10000E-01     4.3988        0.44300E-01    0.23626E-05    0.11403E-07    Intact Salt 
      2639    0.10000E-20    0.10000E-02     4.8613        0.12512E-01    0.56724E-08     0.0000            Intact Salt 
          21    0.10000E-20    0.10000E-02     5.3361        0.31560E-02    0.24695E-13     0.0000            Intact Salt 

Example diagnostic output for a vertical line of nodes  

Top 

Bottom 
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Generic Heat Pipe Explanation 

• Liquid at A 
• Vaporizes at B 
• Condenses at C 
• And D, flows back 

as liquid to A. 

Heat pipes lead to isothermal regions where 
phase change is absorbing energy 
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High resolution Thermo Hydrological Chemical 
Run of Mine salt covering hot waste packages  
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Boiling Line 

Heaters 

1 year   1600 W 

init 

Boiling near the heaters causes salt to precipitate leading to 
porosity reduction.  Vapor condenses across the boiling 

line leading to dissolution and increased porosity 

3x5 m 
 
2-D 
slice 
 
4 cm 
mesh 
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New mesh to get more resolution for coupled  
Thermal Hydrological Chemical Simulations 

2 Reflection boundaries are used to reduce mesh size (1/4 space) 
21 



Range of parameters used in the 
simulations 

Parameter Natural 
Range 

Simulated 
Range 

Backfill saturation 0.01 – 0.05+ 0.01 – 0.1 
Backfill porosity 0.3 - 0.4 0.35 
Clay content 0 – 15%+ 0 – 10% 
Background 
temperature 

15 – 30 C 30 C 
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Fully Coupled  
Thermo Hydrological Chemical  

simulations 
 at the drift scale  

Results 
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Thermo/Hydro/Chem Modeling: 
Results 

Simulation parameters: Heater temperature (750 W), initial saturation in backfill  (S = 10%), maximum capillary 
suction at zero saturation (Pcap,max = 0.5 MPa), clay fraction (none), residual water saturation (Sr = 0.1) 
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24 



Porosity 
changes more 

with  
higher  

heat loads 
 

More heat pipe 
at higher 

temperatures 

250W 500W 

750W 
Saturation 
for 750W  

Time = 2 years 
Satini = 10% 
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Porosity 
changes more 

with  
higher  

Initial saturation 
in the run of 

mine salt 
backfill 

 
More heat pipe 

in a wetter 
system 

 
All at 750W 

Time = 2 years 

Satini=1% Satini=2% 

Satini=5% Satini=10% 
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Clay Dehydration 
 WIPP salt is impure – contains clays and other minerals 
 In laboratory experiments with run-of-mine (RoM) salt, water release 

from clays was observed at discrete temperatures: 
 
 
 
 
 
 
 
 
 
 

 Mass of water produced at 64oC at node i based on the fraction of clay 
(fc), porosity, density of rock, and volume of the cell: 
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Clay Dehydration: Test Problem 

6 nodes 
 
 
 
 
 
 

 
 

1 2 3 4 5 6 

10% clay 

Boundary condition: 
115oC 

Initial condition: Node 1 
= 115oC 
Nodes 2 – 6 = 30oC 

No clay 
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Clay Dehydration Modeling: Results 

Results at 460 days 

No clay 10% clay 
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Conclusions 

 Including water and water vapor in simulations leads to 
– Not much change in low energy cases (<250W per canister) 
– Heat pipes in some higher energy cases (>250W per canister) 

• Lower temperatures near the canisters 
• Salt mass transfer toward the canisters 
• Increased thermal conductivity near the canisters  

– Heat pipe development is positively correlated with: 
• Initial backfill saturation 
• Backfill capillary suction 
• Clay content in the backfill  
• Water mobility at low saturation 
• Water movement into the backfill from the damaged rock zone 
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Future Work 

Experimental validation  
– Heat pipe generation in Run of Mine salt backfill 
– Retention characteristics of Run of Mine salt backfill 
– Drift scale testing at WIPP 

 Inclusion of isotopic tracers in the simulations 
 Inclusion of evaporation  

– Barometric pumping 
– Pressure flow through the underground 

• Seasonal humidity and pressure differences 
• Bulkhead impacts 
• Damaged rock zone impacts 
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