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Where does GDSA Framework fit In?

* Overarching goal: Develop and

demon_strate nqmerical mc_)de”ing and Argillite Host Rock and Engineered Barrier R&D
analysis capability to provide a sound __

technical basis for multiple disposal options
— Three potential host rocks

— Find gaps and enhance capability in process
models, workflow, etc.

— Drive development of process models
— Recent focus on high-temperature waste
package disposal
* In all performance assessment (PA) cases
— Only undisturbed scenarios

— Generic features, events, and processes
(FEPSs) screening (Vaughn, 2012) (Camphouse, 2022)

— Dakota uncertainty and sensitivity analysis
— Main performance metric is peak 1-129

Fundamental

: URL/Field Tests
___ Science
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GDSA Framework
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Processes In all performance assessment models

Coupled heat and fluid flow

= Radionuclide
* Transport via advection and diffusion
e Sorption using linear distribution coefficients (K,)
* Precipitation/dissolution

Radioactive decay and ingrowth in all phases
= \Waste package degradation
= Waste form dissolution
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Argillite reference case PA model

= 3150 24-Pressurized water reactor (PWR) waste

Depth (m Permeability (m?

packages (WPs) and 2000 37-PWR WPs in 84 drifts o | _ Sandstone
= Numerical model is a half-symmetry domain with 6.9
million grid cells [PP—
= Geological features: ws—| [T
* 0.0013 (m/m) head gradient from west to east . .
e Sandstone aquifer above the repository Ll
* Limestone aquifer below the repository
- Lower shale
- Host shale 289
Repository
- Siltstone 1200 — =
Lower shale Schematic of repository

in geological model.

Numerical model colored by material type. " (Sevougian et al. 2019; Swiler et al. 2019)
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Argillite reference case PA model

= Repository features
Bentonite backfill
Instant-release fraction for [-129 of 0.10

= Incremental Latin Hypercube Sampling (LHS) of
uncertain parameters with a final sample size of 200

= Quantity of interest is maximum |-129 in aquifers

and fractional dl ssolution Of SN F Input Description Range Units Distribution
|:> rateSNF  SNF Dissolution Rate 10€-10% yr' log uniform
Mean Waste Package 55 _ 4045 1 g
T rteWP | Do arion Rate 1055 10 yr' | log uniform
kSand Upper Sandsione PO P m? log uniform
Permeability
kLime Limestone Permeability | 1077 — 101 m? log uniform
kLSand Lowsr Sandstone 10-14 — 1012 m? log uniform
Permeability
|:> kBuffer Buffer Permeability 1020 - 1016 m? log uniform
I:> kDRZ DRZ Permeability 1018 — 1016 m? log uniform
Host Rock (Shale) .
pShale Porosity 0.1-0.25 - uniform
’—> bNpKd Np Kq Buffer 0.1-702 m3kg’' | log uniform
:> sNpKd Np Kq Shale 0.047 - 20 m®kg™" | log uniform
1280 m 10 sampled parameters (Np not used)

(Sevougian et al. 2019; Swiler et al. 2019)
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Argillite reference case results

= At 10,000 years

* |Impact of sampled waste
package breach on near
repository 1-129 is clear.

= Diffusive transport of [-129

= At 1,000,000 years

= |n the shale host rock [-129
transport is mainly diffusive

= Advection of I-129 in the
sandstone and limestone
aquifer is evident.

Total 1129 (M)

1.000e-151e-14 1e-13 le-12 le-1] 1e-10 le9 1e-8 le-7 le-6 1.000e-05

(Sevougian et al. 2019) I-129 concentration at 1,000,000 y plotted in a vertical slice at the Y-midpoint of the repository.
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Argillite reference case results

= Significant spread in [-129 breakthrough curves
= Mean is much higher than median

b.) Observation point "sand_obs3"

(Stein et al., 2019; Swiler et al., 2019)
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[-129 concentration versus time for 200 realizations at
limestone aquifer downstream observation point.
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[-129 concentration versus time for 200 realizations at
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Argillite reference case results

(Stein et al., 2019; Swiler et al., 2019)

= Sensitivity indices: how much variance in the output is due to variance in an uncertain input

= Max [I-129] is sensitive to
=  Porosity of the shale host rock near the repository (pShale).
= Aquifer permeability 5km downstream (kLime or kSand).
=  Rate of waste-form and waste package dissolution (lime_obs1)

sand_obs1 (log transform) lime_obs1 (log transform) sand obs3 (log transform) lime_obs3 (log transform)
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Buffer swelling and DRZ evolution: Goals set in 2019

Collaboration with LBNL

« Sandia GDSA PFLOTRAN Development and
Repository Systems Analysis work packages

« Adapt an increasingly mechanistic modeling
approach to PA-scale simulations without
sacrificing computational efficiency

Questions:
e How can coupled Thermal HydroMechanical

Chemical (THMC) simulations affect PA-scale

assessments?
 What can we learn from high-resolution

nearfield models that we can use to upscale to

PA-scale?

 What are the process/scale relationships that
dictate whether a simple functional form is
appropriate for approximating a particular
process?

(Nole and Chang, 2019)

Processes Involved in Bentonite Evolution (2)

THMC processes are coupled and evolve temporally and spatially
2ration of minerals with Alterati fol < I -
h solubility occurs in th elr a\t ':f'mo eey r:;mera g eetrs
e early time period eiate LEIPerio

Initially Bl
partially <~ Desaturation = Re-saturatior

saturated

& and then decreases

0 1 10 100 1,000 10,000 100,000

Time (year)

(Zheng et al., 2022)
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Buffer swelling and DRZ evolution: 2019 proposed workflow

e Use TOUGH-FLAC to derive functional relationships between water
saturation and bentonite swelling stress

* Relate permeability in the disturbed rock zone (DRZ) to swelling stress
We are In the bentonite through calculation of reduced order model for effective
here stress in the DRZ (Chang et al., 2021)

 Compare nearfield PFLOTRAN models with reference cases (e.g
DECOVALEX Mont Terri) in TOUGH-FLAC

 Use models in a PA-scale simulation and compare results back to
nearfield simulations

(Nole and Chang, 2019)
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Buffer swelling and DRZ evolution: Conceptual model

Assume stress on DRZ is radial and isotropic

Assume in swelling stress is a linear function of
the change in average ligquid saturation in the
Sh,min buffer

Two Part Hooke’s Law (TPHM) model from
. Zheng et al. (2015) gives total permeability as a
exponential function of stress

Obtaining
ASlavg
within

buffer/spacer

Simplified model for DRZ evolution study.

(Chang et al., 2021)
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Buffer swelling and DRZ evolution

(Chang et al., 2021)

 Model is ¥4 of one waste package

« All lateral boundaries closed to create reflective boundaries
Model domain.  Hydrostatic initial pressure and temperature
Inside buffer and DRZ S =0.65 and S, =1.0 elsewhere

Simulation mesh near the waste package. Stress-dependent DRZ permeability as a function of
effective stress.
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Buffer swelling and DRZ evolution

Waste package heat and temperature in the Simulated quantities in the DRZ next to the buffer as a function of
repository as a function of log time. log time.
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Buffer swelling and DRZ evolution

« Thermal conductivity (K;) is saturation-weighted
combination of wet and dry properties

* Add temperature dependence in K; to the model
Looking at hotter waste packages
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Results to date

= Performance assessment modelling

e Statistical analysis over 200 simulations has been conducted using DAKOTA and
PFLOTRAN for generic argillite host rock.

* Model behavior appears realistic and methods are robust.
* Aquifer and shale properties have significant impact on peak 1-129 results.

= Small-scale modelling:
* Model for DRZ evolution in response to buffer swelling has been implemented.

* Simulations indicate that buffer swelling has impact on near-waste package flow.
* Temperature-dependence of thermal conductivity added to the model.
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Next steps

= Next 1-2 Years

* Drive development of process models
* Bentonite evolution
» Waste package degradation
* New shale PA cases
e Add uncertainty in waste package heat and inventory
» Add realism/uncertainty in geological structure
» Explore sensitivity to new quantities of interest (e.g. mean residence time in the repository)
* Small-scale modelling
* Smectite to illite material transform module
* Anisotropic permeability and/or thermal conductivity
= Longer term
* (as generation
* Disruptive events (e.g. induced seismicity)
* New material transform modules (e.g. reduced order K;s)
* Explore sensitivity as a function of time

energy.gov/ne
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