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SFWST Disposal Research Control Accounts
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• Overarching goal: Develop and 
demonstrate numerical modelling and 
analysis capability to provide a sound 
technical basis for multiple disposal options 
– Three potential host rocks
– Find gaps and enhance capability in process 

models, workflow, etc.
– Drive development of process models
– Recent focus on high-temperature waste 

package disposal
• In all performance assessment (PA) cases

– Only undisturbed scenarios
– Generic features, events, and processes 

(FEPs) screening (Vaughn, 2012)
– Dakota uncertainty and sensitivity analysis
– Main performance metric is peak I-129

Where does GDSA Framework fit in? 

(Camphouse, 2022)
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GDSA Framework
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 Coupled heat and fluid flow
 Radionuclide 

• Transport via advection and diffusion
• Sorption using linear distribution coefficients (Kd)
• Precipitation/dissolution 

 Radioactive decay and ingrowth in all phases
 Waste package degradation
 Waste form dissolution

Processes in all performance assessment models
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 3150 24-Pressurized water reactor (PWR) waste 
packages (WPs) and 2000 37-PWR WPs in 84 drifts

 Numerical model is a half-symmetry domain with 6.9 
million grid cells

 Geological features:
• 0.0013 (m/m) head gradient from west to east 
• Sandstone aquifer above the repository
• Limestone aquifer below the repository

Argillite reference case PA model

~7000 m
Numerical model colored by material type.

Schematic of repository 
in geological model.

Host shale

Repository

Siltstone

Lower shale

(Sevougian et al. 2019; Swiler et al. 2019)
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 Repository features
 Bentonite backfill
 Instant-release fraction for I-129 of 0.10 

and fractional dissolution of SNF

 Incremental Latin Hypercube Sampling (LHS) of 
uncertain parameters with a final sample size of 200

 Quantity of interest is maximum I-129 in aquifers

Argillite reference case PA model

1280 m

Map view of half of the repository colored by material type.

Backfill

DRZ

Host rock

10 sampled parameters (Np not used)

(Sevougian et al. 2019; Swiler et al. 2019)
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Argillite reference case results

 At 10,000 years 
 Impact of sampled waste 

package breach on near 
repository I-129 is clear.

 Diffusive transport of I-129

 At 1,000,000 years
 In the shale host rock I-129 

transport is mainly diffusive
 Advection of I-129 in the 

sandstone and limestone 
aquifer is evident. 

I-129 concentration at 1,000,000 y plotted in a vertical slice at the Y-midpoint of the repository.

lime_obs1 lime_obs3

sand_obs1 sand_obs3

I-129 concentration at 10,000 y plotted in a horizontal slice at the Z-midpoint of the repository.

(Sevougian et al. 2019)
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 Significant spread in I-129 breakthrough curves
 Mean is much higher than median

Argillite reference case results

I-129 concentration versus time for 200 realizations at 
sandstone aquifer downstream observation point.

I-129 concentration versus time for 200 realizations at 
limestone aquifer downstream observation point.

Median
Median

(Stein et al., 2019; Swiler et al., 2019)
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 Sensitivity indices: how much variance in the output is due to variance in an uncertain input
 Max [I-129] is sensitive to 

 Porosity of the shale host rock near the repository (pShale). 
 Aquifer permeability 5km downstream (kLime or kSand).
 Rate of waste-form and waste package dissolution (lime_obs1) 

Argillite reference case results

Sandstone aquifer sensitivity indices. Limestone aquifer sensitivity indices.

(Stein et al., 2019; Swiler et al., 2019)
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Disturbed Rock Zone (DRZ) Evolution 
Modelling
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Collaboration with LBNL
• Sandia GDSA PFLOTRAN Development and 

Repository Systems Analysis work packages
• Adapt an increasingly mechanistic modeling 

approach to PA-scale simulations without 
sacrificing computational efficiency

Questions:
• How can coupled Thermal HydroMechanical

Chemical (THMC) simulations affect PA-scale 
assessments?

• What can we learn from high-resolution 
nearfield models that we can use to upscale to 
PA-scale?

• What are the process/scale relationships that 
dictate whether a simple functional form is 
appropriate for approximating a particular 
process?

Buffer swelling and DRZ evolution: Goals set in 2019

(Nole and Chang, 2019) (Zheng et al., 2022)



SFWST energy.gov/ne13

Buffer swelling and DRZ evolution: 2019 proposed workflow

• Use TOUGH-FLAC to derive functional relationships between water 
saturation and bentonite swelling stress

• Relate permeability in the disturbed rock zone (DRZ) to swelling stress 
in the bentonite through calculation of reduced order model for effective 
stress in the DRZ (Chang et al., 2021)

• Compare nearfield PFLOTRAN models with reference cases (e.g
DECOVALEX Mont Terri) in TOUGH-FLAC

• Use models in a PA-scale simulation and compare results back to 
nearfield simulations

(Nole and Chang, 2019)

We are 
here
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Assume stress on DRZ is radial and isotropic

Assume in swelling stress is a linear function of 
the change in average liquid saturation in the 
buffer

Two Part Hooke’s Law (TPHM) model from 
Zheng et al. (2015) gives total permeability as a 
exponential function of stress

Buffer swelling and DRZ evolution: Conceptual model

(Chang et al., 2021)

Simplified model for DRZ evolution study.

DRZ

WP

BUFFER
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• Model is ¼ of one waste package
• All lateral boundaries closed to create reflective boundaries
• Hydrostatic initial pressure and temperature
• Inside buffer and DRZ SL=0.65 and SL=1.0 elsewhere

Buffer swelling and DRZ evolution
(Chang et al., 2021)

Model domain.

Simulation mesh near the waste package. Stress-dependent DRZ permeability as a function of 
effective stress.



SFWST energy.gov/ne16

Simulated quantities in the DRZ next to the buffer as a function of 
log time.

Buffer swelling and DRZ evolution

(Chang et al., 2021)

Waste package heat and temperature in the 
repository as a function of log time.
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Buffer swelling and DRZ evolution

• Thermal conductivity (KT) is saturation-weighted 
combination of wet and dry properties 

• Add temperature dependence in KT to the model
• Looking at hotter waste packages

Average liquid saturation in the DRZ as a function of log time.
DRZ thermal conductivity as a function of liquid 
saturation at temperature from 32.5 to 300 oC. (LaForce et al., 2022-in preparation)
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 Performance assessment modelling
• Statistical analysis over 200 simulations has been conducted using DAKOTA and 

PFLOTRAN for generic argillite host rock.
• Model behavior appears realistic and methods are robust.
• Aquifer and shale properties have significant impact on peak I-129 results.

 Small-scale modelling:
• Model for DRZ evolution in response to buffer swelling has been implemented.
• Simulations indicate that buffer swelling has impact on near-waste package flow.
• Temperature-dependence of thermal conductivity added to the model.

Results to date
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 Next 1-2 Years
• Drive development of process models

• Bentonite evolution
• Waste package degradation

• New shale PA cases 
• Add uncertainty in waste package heat and inventory
• Add realism/uncertainty in geological structure
• Explore sensitivity to new quantities of interest (e.g. mean residence time in the repository)

• Small-scale modelling 
• Smectite to illite material transform module 
• Anisotropic permeability and/or thermal conductivity

 Longer term
• Gas generation
• Disruptive events (e.g. induced seismicity)
• New material transform modules (e.g. reduced order Kds)
• Explore sensitivity as a function of time

Next steps
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Questions?
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