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FAIR data is critical to developing defensible models

“Collecting and generating data is outpacing its assimilation, interpretation, and understanding” 

-B. Helland, Associate Director of the Office of Science’s Advanced Scientific Computing Research (ASCR) program

Data Mining Potential Data Mining Approach
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Overview of sorption modeling workflow

• Data importing 

• Original image / Metadata

• Data (Exp. conditions, Kd, etc.) 

Data mining from literatures

• Data unification (+ error
estimation / propagation)

• Data filtration for modeling

• Data export as CSV format for 
modeling

Data formatting

• Data imports to MS ACCESS

• Reference organizing – dataset 
table (experimental conditions)

• Produce data table (sorption data)

Database construction

• Coded in Python environment

• Automized PHREEQC/PEST
simulation (various combinations
of surface reactions)

• Produce optimized surface 
complexation constants

Traditional SC modeling

• Coded in Python environment

• Coupled with PHREEQC for 
aqueous speciation

• Predict partition of adsorbate 
based on machine learning: 
random forest algorithm

ML based SC modeling

Intercomparison

• Coded in Python environment

• Automized PHREEQC/PEST
simulation for surface titration 
of minerals

• Produce optimized surface 
acidity constants

Surface titration modeling

input

L-SCIE
(LLNL Surface Complexation/Ion Exchange)

L-ASCM
(LLNL Automized Surface Complexation Model)

L-ASTM
(LLNL Automized Surface Titration Model)

L-SURF
(LLNL Speciation Updated Random Forest)

OPENSOURCE CODE 

AVAILABLE AT:

https://ipo.llnl.gov/technologies/

software/llnl-surface-

complexation-database-

converter-scdc

https://ipo.llnl.gov/technologies/software/llnl-surface-complexation-database-converter-scdc
https://ipo.llnl.gov/technologies/software/llnl-surface-complexation-database-converter-scdc
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What the L-SCIE database and workflow does
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Example:  U(VI) sorption to quartz and 

intercomparison of published SCMs (from 

RES3T*)

• Optimization is non-unique but some 

models outperform others

• Updates to thermodynamic database 

have greater impact on SCM 

performance than the SCMs.

* 

Model testing using published SCMs
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The L-SCIE database status:

• Total data points:  27,000

• References: 243 

Database engagements:

• JAEA (Yukio Tachi) 

https://migrationdb.jaea.go.jp/sdb_e2/sdb_pre_e.html

• 17,000 (of 70,000 available) JAEA data added to L-

SCIE database (new total: 44,000!)

• HZDR (Vinzenz Brendler)             

https://www.hzdr.de/db/res3t.login

• Database with 7550 surface complexation reaction 

constants mined from the literature (3398 references)

• NEW: SOrption REference DAtabase (SOREDA)

International engagements in L-SCIE development

https://www.hzdr.de/db/res3t.login
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• Amphos21 (David Garcia) in collaboration with 

Belgian Agency for Radioactive Waste 

Management, Ondraf-Niras (Stéphane Brassinnes)

• PSI (Maria Marquez) effort to develop database for 

clay sorption data

• Fudan U. (Zimeng Wang)

1997

2009

International engagements in L-SCIE development
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Research topic in Frontiers in Nuclear Engineering
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Quantifying mineral-based radionuclide retardation

▪ Langmuir Isotherm

Xiang et al. (2013)

Visualization

▪ Empirical fitting.

Approach Method Limitation

▪ No mechanism 

inferred.
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▪ Langmuir Isotherm

▪ Surface Complexation Model

Goldberg et al. (2007) 

Xiang et al. (2013)

Visualization

▪ Empirical fitting.

▪ Fit with 

mechanistic 

descriptions and 

simplifications.

Approach Method Limitation

▪ No mechanism 

inferred.

▪ Restrictive in 

assumptions.

Quantifying mineral-based radionuclide retardation
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▪ Langmuir Isotherm

▪ Surface Complexation Model

▪ Machine Learning Algorithm

Beigzadeh et al. (2020). 

Goldberg et al. (2007) 

Xiang et al. (2013)

Visualization

▪ Empirical fitting.

▪ Fit with 

mechanistic 

descriptions and 

simplifications.

▪ Data-driven 

regression 

development.

Approach Method Limitation

▪ No mechanism 

inferred.

▪ Restrictive in 

assumptions.

▪ Pure ‘black-box’ 

approach.

Quantifying mineral-based radionuclide retardation
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Hybrid ML approach to quantifying mineral-fluid partitioning

▪ (1) Adsorption data, thermodynamic 

databases are imported.

▪ (2) Aqueous speciation calculations are 

conducted, and important geochemical 

features are stored.

▪ (3) Features are inputted to train and 

test a random-forest model describing 

mineral-metal interactions.

▪ (4) Equilibrium metal concentration 

outputted.

▪ (5) Monte-Carlo iterations run to 

propagate uncertainty.
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Results #1: Capacity to generate high quality predictions
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▪ Highlight parameter spaces that most readily impact sorption

Results #2: Data-driven method to conduct sensitivity analysis
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Concluding remarks

Publicly Available License to

LLNL Work Package (July 2022)

▪ LLNL’s new database assimilates FAIR community data,

▪ Enabling the new possibility for…

▪ LLNL’s hybrid ML modeling:

• High throughput, high quality predictions

▪ LLNL’s automated surface complexation modeling:

• Ability to quickly update reaction constants

▪ Increased power of modeling through international 

engagements with nuclear waste community.

▪ “Collecting and generating data is outpacing its 

assimilation, interpretation, and understanding” -B. 

Helland @ AI4ESP Introduction, October 25, 2021
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