

We make the world safer.

Accelerated Basin De-inventory Project at the Savannah River Site

James E. Therrell Mission Planning Manager Environmental Management Operations NWTRB Summer 2024 Board Meeting, August 29, 2024

- Synopsis of the Accelerated Basin De-inventory
- Major constraints on processing L-Basin SNF through H-Canyon
- Groups of SNF identified for processing through the project and challenges for processing each group through H-Canyon
- Overview of how H-Canyon integrates with Liquid Waste and meets WAC
- How will the addition of SNF processed through the project affect the expected number of HLW glass canisters
- What are the groups of SNF that are not expected to be processed during the project that will require continued storage (i.e., beyond 2034) in L-Basin

Overview of the Accelerated Basin De-Inventory Flowsheet

H Canyon Flowsheet

We make the world safer.

4

Integration of Flowsheets

SRNS

When/what/how much material Limits on these facilities in L Area can be processed determine **H** Canyon Feed: L Area / K Area Tank Farms / DWPF **Dissolution characteristics** Fuel characteristics **Glass characteristics** Fuel meat type (U, Pu, Number of fuel Waste quality limits • • bundles per batch etc.) Fissile loading limits • Chemicals needed Enrichment Processing limits • • Processing time Other major metals (enrichment, poison, ٠ Batch volume (cladding, etc.) • dose) Burnup and cooling • Storage limits Canister storage limits (fission products) Equipment availability Tank closure by 2037 Equipment availability Storage limits Cask handling availability

Fuel Characteristics determine

How H Canyon Processes

When/how the material can be added to liquid waste

5

Nuclear Material Inventory

Nuclear Material Category		# of Items	Disposition Path	Nuclear Material Category		# of Items	Disposition Path	Nuclear Material Category		# of Items	Disposition Path
ASNF	HFIR	60	HCA	ASNF-NA	ASNF-NA	381	HCA	Other	Skull oxide	5	HCA
	MTR	2,336	HCA		Future Receipts of ASNF-NA	159	HCA		Kyoto	1	HCA
	Future Receipts of HFIR	68	HCA	Targets	Non-Mark 18A Targets	7	HCA		Slowpoke	5	HCA
	Future Receipts of MTR	161	HCA		Mark-18A Targets	65	SRNL		TSR	22	HCA
NASNF	Groups 1 – 3	229	HCA	Dry fuel	"Unirradiated" Fuel in 6M/2Rs or 9975s	30	HCA/SRNL		RHF	4	HCA
	Groups 4 – 5	166	TBD		Irradiated Fuel in 6M/2Rs or 6L/2Rs	37	HCA		HFBR	1	HCA
FCA	Plates and Rods	118	HCA		INL Debris	2	SRNL/TBD		Sources, Standards, and Samples	Various	HCA/TBD

NASNF Campaigns Defined - Continued

SRNS

We make the world safer.

7

Establishing the Plan

- To create a ten-year, executable processing plan that is integrated with the Liquid Waste system plan:
 - Established processing priorities
 - Determined hard and soft limits
 - Grouped inventory by dissolution characteristics
 - Categorized inventory groups by readiness to process
 - Developed mathematical model to perform mass balances in L Area, H Canyon, and Liquid Waste
 - Set input to annual, group specific, dissolver batches
 - Output needed H Canyon availability, key processing metrics, and projections against limits
 - Generated scenarios by varying rankings of groups as a result of changing the weight assigned to each priority
 - Analyzed results and with concurrence from key stakeholders established a 'baseline' scenario

H Canyon Dissolution Targets

- Process over 70% of the SNF stored
- Create storage space for 67 HFIR cores and 2,680 bundles

Volume Storage in H Canyon

Summary of Results

DWPF Processing

We make the world safer. 12

Projection of Remaining Materials

Conclusion

- ABD expedites processing of SNF and couples the SRNS and Liquid Waste flowsheets
- The plan utilized processing limits and considered availability to develop an achievable reduction of <u>70% of the DOE-EM SNF</u> designated for SRS
- Working to establish disposition of remaining SNF post-Liquid Waste

INNOVATION • DEFENSE NONPROLIFERATION • ENVIRONMENT

Savannah River Nuclear Solutions We make the world safer.

