

R&D activities to address high temperature and high pH conditions in EB

Yifeng Wang Sandia National Laboratories

U.S. Nuclear Waste Technical Review Board Spring 2024 Public Meeting, May 21, 2024, Knoxville, Tennessee

SAND2024-06134O

Outline

- Relevant disposal environments
- Related R&D activities
- Stability of bentonite
- Saponite as an alternative buffer material
- Update on HotBENT field experiment
- Concluding remark

Disposal environments: Elevated temperatures

- 37 PWR assemblies
- 60 GWd/metric tonne burnup
- In crystalline rock
- Drift spacing: 60 m
- Canister spacing: 20 m (center to center)

- High temperature can attain on waste package surface.
- Thermal impact on bentonite performance as a barrier for T > 100 °C is largely unknown.
- If there is any impact, it must be evaluated over a limited time interval.

Why to raise the thermal limit of buffer materials?

- Maximizing repository capacity
- Facilitate earlier disposal
- Demonstrating barrier capability
 - Mineral phase change?
 - To what degree?
 - Swelling capability
 - Sorption capability

Wang and Hadgu (2020)

Disposal environments: High pH

Cementitious materials

- Rock support
- Liner
- Tunnel plug

Alkaline plume from a cementitious material may impact swelling capability of a bentonite buffer material.

Raising the thermal limit of buffer materials: A joint effort

Objectives

- Clarify limiting factors for smectite-to-illite transformation.
- Demonstrate the stability of bentonite materials at elevated temperature
- Develop new buffer materials for harsh environments

Related R&D activities

- Hydrothermal stability study of Na smectite (SNL).
- Radionuclide sorption study of hydrothermally altered bentonite (LLNL).
- Feasibility study of saponite as a new buffer material for harsh environments (SNL)
- Thermal-hydrologic-mechanical-chemical (THMC) modeling (LBNL)

Related International programs:

- HotBENT: T= 175, 200 °C; materials = Wyoming (MX-80), BCV (Czech Republic bentonite)
- HE-E: $T = 140 \degree C$; material = MX-80
- EURAD-HITEC: T = 100 150 °C; materials = bentonite, host rock

Reference case: Double layer configuration with two clay buffer materials for a 12-PWR canister

Clarifying limiting factors for smectite-to-illite transformation: Accelerated experiments

Approach: (1) Create optimal conditions to make illite, and then (2) find out which factors can effectively inhibit the transformation.

Potential controlling factors:

- Temperature
- Water/solid ratio (SiO₂ concentration)
- Duration
- Cations (Na, K)
- Solution chemistry (DI, KCl solution)

Material Preparation

- 1. Crush Na-smectite with mortar and pestle
- 2. Obtain $< 75 \mu m$ particles with #200 sieve
- 3. Obtain $< 2\mu m$ particles by settling in water
- 4. Exchange Na-smectite with 1M KCl

Reactor: 200 mL Acid Digestion Parr Vessel

Reaction Conditions

Temperature: 200° C Liquid to Solid Ratio: 100, 500, 1000 Solution: 150 mL 1M KCl or DI water Time: 7, 14, 28, 56, or 112 days Clay Type: Na-smectite or K-smectite

Post-Reaction

- 1. Centrifuge
- 2. Decant fluid and acidify with concentrated HNO3
- 3. Wash solids with DI water 3 times to remove excess Cl-
- 4. Dry solids at 60° C and record yield
- Analyze solid products using XRD (oriented & glycolated mounts)

 Resaturate solid products with 1M NaCl solution
- 6. Analyze liquid products using ICP-OES

 $2Na_{0.4}(AI_{1.47}Mg_{0.29}Fe_{0.18})Si_4O_{10}(OH)_2 \text{ (Na-smectite)} + 0.85K^+ + 1.07H^+ \rightarrow 1.065K_{0.8}(AI_{1.98}Mg_{0.02})(Si_{3.22}AI_{0.78})O_{10}(OH)_2 \text{ (illite)} + 4.6SiO_2 + 0.36Fe(OH)_3 + 0.56Mg^{2+} + 0.8Na^+ + 0.9H_2O$

Findings: It is possible to raise the thermal limit of bentonite beyond the existing limit

- Under optimal conditions, smectite-to-illite transformation can happen relatively fast (within weeks).
- Transformation requires a large external K⁺ source. K-exchanged smectite in DI water is still deficient in K⁺ to convert smectite to illite at 200 °C.
- Transformation requires an extremely high water/solid ratio for SiO₂ dissolution.
- The required optimal conditions can hardly be met in an actual barrier system.
- If happening, the transformation would be limited.

Enhancing smectite stability with chemical additives

Chemical additives to inhibit smectite-to-illite transformation: $Mg(OH)_2$ (brucite) $\rightarrow Mg^{2+} + OH^{-}$ SiO_2 (am) $\rightarrow SiO_2$ (aq)

Stability of Montmorillonite

Xiong and Wang (2023)

Saponite: Trioctahedral Mineral of Smectite Group

Xiong and Wang (2023)

Saponite as a Buffer Material for Harsh Disposal Environments

	Density	Dry density	Hydraulic	Swelling pressure (n)
Samples	kg/m ³	kg/m ³	(K), m/s	kPa
MX-80	1800	1310	E-10	200
MX-80	2000	1175	2E-13	4700
GMZ	1788	1233	E-11	530
Saponite	1800	1175	4E-12	1300
Mixed-layer FIM	1800	1392	4E-11	280
Mixed-layer FIM Mixed-layer	2000	1175	2E-11	1000
Holmehus Mixed-layer	1800	1310	2E-11	600
Holmehus	2000	1175	8E-12	2000
			Yang et al. (2014)	

Saponite

- Naturally occurring, bulkily available
- Chemical stable at elevated temperature and high pH
- Sufficiently high swelling pressure

HotBENT Field Experiments: Field scale long-term testing of buffer material stability

Design:

- Four modules Differing in heating temperature, bentonite, time length and w/o concrete liner
- **Two experimental time lengths** H3 and H4 will run for 5-10 years; H1 and H2 will run 15-20 years
- **Two bentonites:** Wyoming (MX-80) BCV (Czech Republic bentonite)
- **Two shapes:** Pedestals for the heaters made of highly compacted blocks, dry density > 1.7 g/cm₃; granulated Bentonite Mixture (GBM), dry density >1.45 g/cm₃

Updates

- Heating Started on Sep 9, 2021.
- Heaters have been ramped up in steps.
- By June 2, 2022 all heaters reached their targeted temperature.
- Sensor data have been collected. Many relative humidity sensors are not operational.

Concluding remark

- Raising the thermal limit of buffer material will maximize repository capacity and facilitate earlier disposal.
- Smectite-to-illite transformation is not favorable in an actual repository environment with limited K⁺ availability, a low water/solid ratio, and a narrow thermal window for transformation.
- Stability of smectite can be further improved by chemical additives.
- Saponite can be an attractive buffer material for high temperature and high pH environments.
- By combining laboratory studies and long-term field tests, it is possible to raise the thermal limit of buffer materials beyond the existing 100 °C.

https://www.researchgate.net/figure/Smectite-structure-of-a-2-1-claymineral-showing-two-tetrahedral-sheets-sandwiched_fig2_274095227

References

- Karnland, O., Olsson, S., Nilsson, U., Sellin, P. (2007) Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions, Physics and Chemistry of the Earth, Parts A/B/C, 32, 275-286.
- Mills, M. M., Sanchez, A. C., Boisvert, L., Payne, C. B., Ho, T. A., Wang, Y. (2023) Understanding smectite to illite transformation at elevated (>100 °C) temperature: Effects of liquid/solid ratio, interlayer cation, solution chemistry and reaction time, Chemical Geology, 615,121214.
- NEA (2012) Cementitious Materials In Safety Cases for Radioactive Waste: Role, Evolution and Interactions, NEA/RWM/R(2012)3/REV.
- Sun, Z., Chen, Y., Ye, W., Cui, Y., Wang, Q. (2020) Swelling deformation of Gaomiaozi bentonite under alkaline chemical conditions in a repository, Engineering Geology, 279,105891.
- Wang, Y., Hadgu, T. (2020) Enhancement of thermal conductivity of bentonite buffer materials with copper wires/meshes for high-level radioactive waste disposal, Nuclear Technology, 206, 1584-1592.
- Xiong, Y., Wang, Y. (2023) Saponite as a New Generation Engineered Buffer Material for High Level Nuclear Waste Disposal: Its Chemical Stability in High-pH and High-Temperature Environments. The Canadian Journal of Mineralogy and Petrology, 61(2), 351–364.
- Yang, T., Pusch, R., Knutsson, S., Liu, X.-D. (2014) The assessment of clay buffers for isolating highly radioactive waste. WIT Transactions on Ecology and the Environment, 180, 403–413.

Acknowledgment

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.