

Overview of Commercial SNF Degradation Rate Models

David Sassani¹, Carlos Jove-Colon¹, Brady Hanson² SFWST National Technical Director 1-Sandia National Laboratories 2-Pacific Northwest National Laboratory

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2024-06251PE

1

Presentation Outline

- Concepts for Degradation Rate of Spent Nuclear Fuel (SNF)
 - Background
 - Concepts for SNF degradation
 - SNF degradation rates for repository system performance assessment (PA)
 - Program models implemented for
 - Process understanding
 - Performance assessment
- The Fuel Matrix Degradation Model
 - Process models radiolysis model and mixed potential model
 - Primary sensitivities
 - Model couplings and implementation for GDSA
- Strategic Approach for SNF Degradation Testing
 - Methodology for prioritization
 - Activity status/discussion
 - Path forward
- International Collaborations (B. Hanson)

Context: Breached SNF Canister in Repository

Schematic figure of a breached SNF waste canister

Source: Wang et al. (2016)

Waste Package (WP) Breached

- Fluid pathways in/out
- In-package chemistry
 - Incoming water
 - Metal corrosion (WP internals)
 - Spent nuclear fuel (SNF) corrosion drives radionuclides (RN) releases
- Away from the fuel surface RN
 - Interact with corrosion products and bentonite barrier
 - Evaluated for solubility limited concentration

3

Basic Concepts of SNF Degradation

- First Approximation: SNF as UO₂ Ore Deposit Analogues
 - Stable for millions/billions of years in saturated/anoxic systems
 - Lower bound on degradation rate from chemical dissolution
 - U (IV) in SNF dissolves to U(IV) species in solution
 - Flux of solvent (or diffusion of dissolved) controls rate to low value
 - This is a reasonable **MINIMUM** bound for degradation rate of SNF
- Query: What Else Matters for Reality? (to Increase Rate Above MIN)
 - Oxidation of U(IV) to U(VI) is primary, first-order effect (sources?)
 - Little to none from materials mainly strongly reducing metals
 - Groundwater influx possible for future events but not continual/pervasive
 - SNF delta from UO₂ alpha radiation field radiolytic generation of oxidants
 - This is the major source of oxidants (e.g., H₂O₂) directly at SNF surface
 - IF the rate of production drives SNF oxidation, this is a reasonable **MAXIMUM** bound for degradation rate of SNF
- Query: What Else Matters for Reality? (Potential Sinks for H₂O₂ to Offset **MAX**)
 - Other reductants
 - Other constituents in SNF (e.g., Am, Pu, etc. only few percent)
 - Steels are not directly at oxidant source location (mm vs microns, but abundant)
 - Cladding proximal, but very unreactive at these relevant temperatures
 - Hydrogen (H2) generation potentially abundant from steel surface corrosion, labile to reach SNF surface, reactive

Conceptual Overview of SNF Degradation Models

- Reducing Disposal Environments
- Two Release Processes Concepts:
 - Instant Release Fraction (IRF)
 - At cladding failure (gap & grain boundaries)
 - Fuel Matrix Degradation (FMD)
 - UO₂ solubility limits (slow)
 - Oxidative Dissolution (faster)
 - Radiolytic oxidants e.g., H_2O_2
 - Reductants e.g., H₂
 - Role of Epsilon Phase (Ru, Rh, Pd, Mo, Tc)
 - "Protects" matrix grains from oxidation
 - Cathodic coupling?, catalytic?, both?
 - FMD Model includes all above to assess the SNF matrix degradation rate over time

5

Spent Fuel Degradation Rates from Other Programs

 $Table 3-2. \ UNF dissolution \ rates \ relevant \ to \ contact \ with \ ground water \ in \ crystalline \ rock \ under \ reducing \ conditions \ end{tabular} and \ reducing \ conditions \ end{tabular} and \ reducing \$

Source¤	Rates¤	Units¤	Comments¤	R
SKB·(2006, 3.3.7)¤	$10^{-8} \cdot (\min)^{\leftarrow}$ 10^{-7} \cdot (mode)^{\leftarrow} 10^{-6} \cdot (max)^{\Box}	yr ⁻¹ ¤	Log-triangular·distribution·based·on·Werme·et·al.· (2004) ^a	
Pastina and Hellä (2010, 1.4.6)¤	10 ⁻⁷ ·(reference)¤	yr ⁻¹ ¤	Based on model by Werme et al. (2004) and data by King and Shoesmith (2004), Ollila and Oversby (2005), Carbol et al. (2006), and Ollila (2008) that show absence of radiolysis effects in presence of metallic iron (strongly reducing conditions); considered pessimistic (p. 138)¤	x
Ollila (2008)¤	Anoxic: ¶ $8.1 \cdot \times \cdot 10^{-7} \cdot$ (min) ·¶ $2.2 \cdot \times \cdot 10^{-6} \cdot$ (max) · Reducing: ¶ $4.3 \cdot \times \cdot 10^{-8} \cdot$ (min) ¶ $2.2 \cdot \times \cdot 10^{-7} \cdot$ (max) ¤	yr ⁻¹ ¤	$\label{eq:static-batch-dissolution-tests, isotope-dilution, 0.01 M-NaCl; UO_2 doped with 0, 5 and 10\% ^{233}U; anoxic conditions from N_2 and 1 ppm S^2 (E_h \sim -200 mV); reducing conditions from N_2 and Fe (E_h \sim -400 mV); 2 cm^2 g^{-1} geometric surface area$	
Röllin et al. (2001)¤	6·×·10 ¹⁰ ·×·U _{max[□]}	mg·m ^{−2} ·d ^{−1∞}	$\begin{array}{c} \underbrace{U_{max}}_{is} \text{ the } \text{a} \text{queous } \text{solubility } \text{of } \text{UO}_{2(c)} \cdot \text{in } \text{mol} \cdot \text{L}^{-1}; 300 \cdot \text{cm}^2 \cdot \text{g}^{-1}; \text{reducing } \text{conditions } (\sim 8 \cdot \times \cdot 10^{-4} \cdot \text{mol} \cdot \text{L}^{-1} \cdot \text{H}_{2(g)}); \\ \text{forward } \text{reaction } \text{rate } \text{because } \text{measured } \text{under } \text{flow-through } \text{conditions}; \text{very } \text{low } \text{flow } \text{rates } \text{provided} \cdot \text{insufficient } \text{flux } \text{of } \text{H}_{2(g)} \text{ to } \text{maintain } \text{reducing} \cdot \text{conditions} \\ \text{conditions} \end{array}$	
Jerden et al. (2015)¤	FMDM¤	mg·m ⁻² ·yr ⁻¹ ¤	The FMDM code is coupled with PFLOTRAN to calculate the UNF dissolution rate as a function of environmental conditions and surface precipitation (see text); $0.001 \text{ m}^2 \text{ g}^{-1}$ specific surface area recommended (Cachoir and Mennecart 2011; Jerden, J., pers. comm.) ^{\overlaphi}	

Figure 10-44. Sensitivity of the base case result to the fuel dissolution rate. Semi-correlated hydrogeological DFN model for Forsmark. 1,000 realisations of the analytic model for each case.

Source: SKB 2006, Long-term Safety for KBS-3 Repositories at Forsmark and Laxemar—a First Evaluation, TR-06-09, section 10.6.5 Also, SKB 2006, Fuel and Canister Process Report for the Safety Assessment SR-Can, TR-06-22, section 2.5.5

Source: Sassani et al., 2016

5/22/2024

6

Why Develop a Mechanistic Model?

- Understanding Mechanisms/Processes:
 - Allows consideration of the environment context for the results
 - Provides a basis for interpreting experimentally determined data

5/22/2024

- Permits relating short-term data from experiments to expected long-term system evolution
- Creates a more transparent construct of application versus random sampling application

UO₂ Dissolution: Mechanistic Representation

- SNF (UO₂) matrix dissolution rate defines release rate of radionuclides (RN) (congruent)
- The FMDM includes:
 - Solubility-limited mechanism during aqueous interactions
 - Effect of dissolved carbonate on UO₂ dissolution rate
 - Effects of radiolysis (α) produced oxidants (H₂O₂)
 - Reaction of H₂ at the fuel surface
 - Electrochemical reactions of oxidant/reductant species via Noble metal particles (NMP)

FMDM Model Sensitivities

Figure 7. Summary of compiled results from FY2014 MPM V2 sensitivity runs. (from Jove-Colon et al., 2014)

Fuel Matrix Degradation Model (FMDM)

The Fuel Matrix Degradation Model (FMDM)

- Based on the Canadian Mixed Potential Model (MPM) for UO₂ dissolution (Shoesmith et al., 2003)
- Electrochemical transport model
- Surface potentials based on major interfacial anodic and cathodic reactions
- Reaction rates for the fuel surface reactions used to represent oxidative UO₂ dissolution
- H₂ catalytic oxidation by noble metal particles (NMPs)
- H₂O₂ generated by α irradiation field (extends to ~35 microns from fuel surface)
- 1-D diffusive transport of chemical species
- Surface precipitates (e.g., schoepite/studtite)

FMDM Electrochemical (E-chem) Reactions at the SNF Surface

	SNF Surface Half Reaction	IS
Number	Reaction	Туре
1	$UO_2 \rightarrow UO_2^{2+} + 2e^-$	Anodic
2	$UO_2 + 2CO_3^{2-} \rightarrow UO_2(CO_3)_2^{2-} + 2e^{-}$	Anodic
3	$UO_2 \rightarrow UO_{2(aq)}$	Chemical
4	$H_2 + 2OH^- \rightarrow 2H_2O^+ + 2e^-$	Anodic
5	$H_2O_2 + 2OH^- \rightarrow O_2 + 2H_2O + 2e^-$	Anodic
6	$H_2O_2 + 2e^- \rightarrow 2OH^-$	Cathodic
7	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	Cathodic

NMP Surface Half Reactions

Number	Reaction	Туре
8	$H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$	Anodic
9	$H_2O_2 + 2e^- \rightarrow 2OH^-$	Cathodic
10	$H_2O_2 + 2OH^- \rightarrow O_2 + 2H_2O + 2e^-$	Anodic
11	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	Cathodic

The Fuel Matrix Degradation Model (FMDM)

- Anodic/cathodic e-chem reactions applied to UO₂ and NMP surfaces
- UO₂ oxidative dissolution rate is represented by the net current densities of e-chem reactions
- E-chem reaction rates determine the current densities
- SNF degradation rate is calculated from total U flux into solution (translates to a fractional degradation rate)

Source: Thomas (2024), Fuel Matrix Degradation Process Model Documentation, in prep.

Original Context for the Source Term in System Model

5/22/2024

Ongoing and Future FMDM Activities (SNL)

Summary:

- FMDM describes SNF degradation
 - Includes effects of NMP catalysis, radiolytic oxidants, and H₂ from steel corrosion
 - Development considers literature and experimental SNF degradation data
- Enhancements to the Geologic Disposal Safety Assessment (GDSA) Framework
- Strategic testing activities for SNF degradation

Conceptual Framework for Source Term Processes in GDSA (Adapted from Mariner, et al., 2019)

Developing Strategic Testing Plan for SNF Degradation

- Review Conceptual Processes to Identify Gaps
 - Relate to existing models and data
 - Process understanding (technical bases)
 - Integrate within performance assessment approach
 - Features, events, and processes (FEP) screening (include/exclude)
 - Uncertainty treatment
 - Fundamental gap
- Apply Grading Approach to Prioritize Gaps
 - Use current approach for Program Activities (evolving)
 - Risk-informed
- Evaluate Testing Methods to Address Highest Priority Gaps
 - Assess/rank available methodologies to answer open questions
 - Efficacy, duration, resource needs
 - Plan highest priority testing strategy
 - Iterate for next level(s) gaps as appropriate

Prioritization Method – Importance to Safety (Sevougian et al., 2019)

Post-Closure Safety Impact	Post-Closure Safety Description	PCSS Numerical Value
High importance to post-closure safety	Knowledge gained by closing identified gap strongly affects one of the post-closure safety assessment elements.	5
Medium importance to post-closure safety	Knowledge gained by closing identified gap moderately or weakly influences one of the post-closure safety assessment elements.	3
Low importance to post-closure safety	Knowledge gained by closing identified gap is of a supporting nature and does not strongly affect one of the post-closure safety assessment elements.	1

Prioritization Method – State of the Art Level (Sevougian et al., 2019)

SAL Description	SAL Definition	SAL Numerical Value
Fundamental Gaps/Data Needs	The representation of a subject area is under development, and/or the data or parameters in the representation of a subject area are being gathered.	5
Improved Representation	Methods and data exist, and the representation may be reasonable but there is not widely agreed upon confidence in the representation.	4
Improved Defensibility	Focuses on improving the technical basis and defensibility of how a subject area is represented by data and/or models.	3
Improved Confidence	The representation of a subject area is technically defensible, but improved confidence would be beneficial.	2
Well Understood	The representation of a subject area is well developed, has a strong technical basis, and is defensible.	1

Prioritization Method – Scores Merged (Sevougian et al., 2019)

Status and Path Forward

- Status of Testing Strategy Development
 - Preliminary Gap definitions
 - Preliminary prioritization of Gaps
 - Based on 2019 RoadMap Reevaluation (Sevougian et al., 2019)
- Path Forward

5/22/2024

- Use FEP Tool to map Gaps to FEP (detailed sub-FEP level)
- Assess Scoring methodology updates (FEP based)
 - Details of risk-informed bases for Post-closure safety score
 - Review FEP context for State-of-the Art Level
- Revise Prioritization
- Assess methods available for highest priority FEP Gaps
- Develop Strategy for further SNF Testing

Recent International Collaborations

- European Joint Programme on Radioactive Waste Management (EURAD)
 - FIRST Nuclides (Fast/Instant Release of Safety Relevant Radionuclides from Spent Nuclear Fuel) Associated Group 2012-2014
 - DisCo (Modern Spent Fuel Dissolution and Chemistry in Failed Container Conditions) Associated Group 2017-2021
- International-Nuclear Energy Research Initiative (I-NERI)
 - JRC/ITU, BAM, NAGRA (Germany and Switzerland)
 - KAERI (South Korea)
- Studsvik Cladding Integrity Project (SCIP) IV 2019-2024
- International Atomic Energy Agency (IAEA)
 - Spent Fuel Performance Assessment and Research (SPAR) IV 2016-2020

Ongoing and Future International Collaborations

- IAEA
 - Spent Fuel Research and Assessment (SFERA)
 - Challenges, Gaps and Opportunities for Managing Spent Fuel from Small Modular Reactors
- EURAD-2
 - Release of safety relevant radionuclides from spent nuclear fuel under deep disposal conditions (SAREC)
- International Spent Fuel Workshop
 - Spain 2022
 - France 2024

Summary

- The Fuel Matrix Degradation Model
 - Couples process models radiolysis model and mixed potential model
 - Radiolytic oxidants drive SNF degradation rate
 - Evaluated sensitivities show H₂ pressure primary variable
 - Model implemented in GDSA as alternative to fractional degradation rate sampling
 - GDSA evaluation of surrogate models for faster performance (next presentation)
- Strategic Approach for SNF Degradation Testing
 - Methodology for prioritization is being updated with revised program work
 - Status is "ongoing"
 - Path forward
- International Collaborations
 - Moving forward with EURAD-2 and IAEA integration

Questions?

References

- Cachoir, C., Carbol, P., Cobos-Sabate, J., Glatz, J., Grambow, B., Lemmens, K., Martinez-Esparza, A., Mennecart, T., Ronchi, C. and Rondinella, V. (2005) Effect of alpha irradiation field on long-term corrosion rates of spent fuel. European Commission Project, Spent fuel stability under repository conditions, Work package WP3, Deliverable D9; 88 pp.
- Jerden, J., Lee, E., Gattu, V.K. and Ebert, W. (2019) Fuel Matrix Degradation Model Development Update: Alloy Corrosion Rates and Hydrogen Generation (ANL/CFCT-19/12). Argonne National Lab.(ANL), Argonne, IL (United States), 49 pp.
- Jove-Colon, Carlos F., Weck, Philippe F., Sassani, David, Zheng, L.; Rutqvist, J.; Steefel, C. I.; Kunhwi, K.; Nakagawa, S.; Houseworth, J.; Birkholzer, J.; Caporuscio, F. A.; Cheshire, M.; Rearick, M.; McCarney, M. K.; Zavarin, M.; Benedicto, A.; Kersting, A. B.; Sutton, M.; Jerden, J.; Frey, K. E.; Copple, J. M.; and Ebert, W., Evaluation of Used Fuel Disposition in Clay-Bearing Rock, SAND2014-18303 R, September 2014.
- Mariner, P. E., Connolly, L. A., Cunningham, L. J., Debusschere, B. J., Dobson, D. C., Frederick, J. M., and Wallace, M. G. (2019). Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010. Sandia National Laboratories. SAND2019-12001R.
- Poinssot, C., Ferry, C., Kelm, M., Cavedon, J., Corbel, C., Jegou, C., Lovera, P., Miserque, F., Poulesquen, A. and Grambow, B. (2005) Spent fuel stability under repository conditionsfinal report of the European Project. CEA Saclay.
- Sassani, D.C., Jang, J-H., Mariner, P., Price, L., Rechard, R., Rigali, M., Rogers, R., Stein, E., Walkow, W., and Weck, P., The On-line Waste Library (OWL): Usage and Inventory Status Report, M2FT-16SN080501042; FCRD-UFD-2016-000080, SAND2016-9485 R, September 23, 2016, 103 pp.
- Shoesmith, D.W., M. Kolar and F. King. 2003. A mixed potential model to predict fuel (uranium dioxide) corrosion within a failed nuclear waste container, Corrosion 59, 802-816.
- SKB (Svensk Kämbränslehantering AB [Swedish Nuclear Fuel and Waste Management Co.]), 2006. Long-Term Safety KBS-3 Repositories at Forsmark and Laxemar—a First Evaluatin, TR-06-09.
- SKB (Svensk Kämbränslehantering AB [Swedish Nuclear Fuel and Waste Management Co.]), 2006. Fuel and Canister Process Report for the Safety Assessment SR-Can, TR-06-22.
- Wang, Y., Hadgu, T., Kalinina, E., Jerden, J., Copple, J., Cruse, T., Ebert, W., Buck, E., Eittman, R. and Tinnacher, R. (2016) Used Fuel Disposition in Crystalline Rocks: FY16 Progress Report. Sandia National Laboratories, SAND2016-9297R; Albuquerque, NM, USA, 231 pp.

