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How Social Science Informs 
Engineering Practice

If one stepped back and viewed the state of techno-
logical development in the United States since the end 
of World War II (although the demarcation is hardly 
precise), it would appear dramatically different from 
that of earlier years. Technological capacity, driven 
by scientific research and engineering practice, has 
exploded in ways that could not have been predicted 
or anticipated in 1945. Consider the technology-driven 
revolutions in telecommunications, access to informa-
tion, and agriculture that have significantly altered the 
lives of the last two generations.

Concurrently, the relationship between technology 
and society began to change fundamentally. Where once 
choices among technological alternatives were made 
by a narrow set of parties, either entrepreneurs or gov-
ernment officials, those decisions increasingly became 
subject to public scrutiny and influence. Where once 
the consequences of a technology were seen as largely 
localized, impacts came to be understood as more wide-
ranging—geographically and temporally. Where once a 
particular technology could be assessed independently, 
its interaction with others now needed to be consid-
ered; for example, choices about new energy production 
technologies can affect transportation choices, housing 
patterns, and agricultural productivity.

By the mid-1970s, evidence had accumulated that, 
notwithstanding the general public’s deep appreciation 
for technological development, strains of skepticism 
and discomfort were starting to emerge (LaPorte and 
Metlay, 1975a, 1975b). Controversies over the fluori-

dation of public water supplies, government support 
for building supersonic commercial aircraft, and the 
use of pesticides challenged how decisions were made 
about technological development and deployment, 
and prompted Langdon Winner’s memorable question 
(Winner, 1980): Do artifacts have politics? Today there 
are few who would argue with the question’s tacit affir-
mative answer. 

As the relationship between technology and society 
grew more nuanced and multifaceted, social scientists 
became more intrigued by it. A relatively rich litera-
ture, and even new intellectual disciplines—such as risk 
analysis and the social study of science and technol-
ogy—materialized. Drawing on three strands (among 
many) from that literature, this volume of The Bridge 
focuses on the question, “How can social science inform 
engineering practice?” 

The first thread concerns increased complexity and 
whether it constrains the management of technologi-
cal systems, with respect to either shaping relevant and 
appropriate public policies or governing the systems’ 
operation. Daniel Sarewitz and I argue that certain 
societal problems, many of which are associated with 
advanced technologies, are so “messy” that standard 
and familiar decision strategies cannot adequately 
address them. Nick Pidgeon describes two perspectives 
for thinking about how organizations operate complex 
technical systems such as nuclear power plants and 
space shuttles. One view maintains that these organiza-
tions can be designed to be as reliable as needed, and 
the other, that “normal accidents” are inevitable.

The second thread looks at how the general public 
evaluates risky technologies. Roger Kasperson discuss-
es the “social amplification of risk.” He explains why 
events that seem to be of very minor importance to spe-
cialists can nonetheless evoke strong public reactions 
that have substantial consequences. Hank Jenkins-
Smith and his colleagues explore public preferences for 
managing high-activity radioactive waste. This work 
may be helpful as national policymakers consider new 
initiatives in the wake of the Obama administration’s 
decision to seek alternatives to the Yucca Mountain 
repository project.

The third thread uses the case-study methodology to 
investigate instances where the engineering and social 
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dimensions were tightly coupled. Jameson Wetmore 
presents three examples when engineers and social 
scientists collaboratively worked on projects ranging 
from the regulation of nanosilver in antibacterial cloth-
ing to transmitting unspoken social cues to the blind 
to designing stoves for villagers in Ghana. He argues 
that without that collaboration the projects would not 
have succeeded. Ray Wassel summarizes a report by the 
National Academy of Engineering and the National 
Research Council that investigated the root causes of 
the Macondo well blowout. He touches on three issues: 
the interpretation of data associated with the cement-
ing step; whether early warnings about the reliability of 
the blowout preventer were discounted; and why regula-
tion by the Minerals Management Service was so lax.

Notwithstanding their varied approaches, all the 
articles, either explicitly or implicitly, address two key 
issues that are at the heart of the engineer’s vocation: 
First, how are uncertainties resolved, perceived, com-
municated, and managed? Second, how are tradeoffs 
among salient values made? But, besides being of some 
intellectual interest, how might the two key issues 
inform engineering practice, which, after all, is the 
focus of this volume?

Some of the articles offer fairly straightforward pre-
scriptions. In our analysis of messy problems Sarewitz 
and I argue that the current debate about climate 
change policies is misdirected and that misdirection 
is responsible for the public policy stalemate. Pidgeon 
reminds us that there may be constraints, imposed by 
the complexity of a technological system, that inher-

ently limit an organization’s ability to prevent accidents 
and upsets. These limits should be kept in mind when 
new systems are designed and implemented.

In the other articles, the recommendations are more 
implicit but do seem to follow rather directly from the 
analyses. Kasperson’s explication of the social amplifi-
cation of risk does more than reaffirm the maxim that 
“perceptions are reality.” He cautions that engineers’ 
calculations of risk are important, but by no means 
exhaustive, measures of how the general public actually 
responds to technological innovations. Finally, Was-
sel’s description of what happened at the Macondo well 
leads one to ask, almost immediately, What if the deep-
water oil exploration industry established an organiza-
tion similar to the one created by the nuclear power 
industry (INPO) to monitor the performance of indi-
vidual companies and disseminate best practices? 

In sum, by exploring the management of uncertainty 
and the trading off of values from a multiplicity of per-
spectives, the articles cumulatively illustrate how social 
science can indeed inform engineering practice.
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